
  

  

 

Abstract-- Inappropriate shocks due to misclassification of 

supraventricular and ventricular arrhythmias remain a major 

problem in the care of patients with Implantable Cardioverter 

Defibrillators (ICDs). The purpose of this study was to 

investigate the ability of a new covariance-based support vector 

machine classifier, to distinguish ventricular tachycardia from 

other rhythms such as supraventricular tachycardia. The 

proposed algorithm is applicable on both single and dual 

chamber ICDs and has a low computational demand. The 

results demonstrate that suggested algorithm has considerable 

promise and merits further investigation. 

 

I. INTRODUCTION 

Mortality benefits from placement of implantable 

cardioverter defibrillators (ICDs) - battery operated devices 

implanted in the chest that constantly monitor the heartbeat 

and if necessary deliver electrical shocks to restore the 

normal heart rhythm - have been demonstrated in multiple 

studies and have led to a significant increase in the number 

of patients receiving ICDs and the number of lives saved due 

to ICD therapy.  However, inappropriate shocks due to 

misclassification of supraventricular tachycardia (SVT) - 

which doesn’t need therapy - and ventricular tachycardia 

(VT) - which needs therapy - occur in up to 40% of patients 

[1-5]. ICD shocks are physically painful, decrease quality of 

life, and if recurrent cause an extremely high amount of 

patient anxiety and trauma. Inappropriate shocks may also be 

proarrhythmic [6-10]. 

So far, various discriminating algorithms have been 

proposed to distinguish between VT and SVT [8, 11-18]. 

However, current algorithms do not adequately discriminate 

supraventricular and atrial arrhythmias from ventricular 

tachycardia, resulting in inappropriate therapy [19-34]. In 

this study, we have proposed a new algorithm that utilizes 

support vector machine (SVM) classifiers to differentiate 

these rhythms from each other.  

SVM is an optimization based approach for solving 

machine learning problems. It classifies points by assigning 

them to one of two disjoint half spaces [35]. In this study, we 

have used proximal support vector machine (PSVM) which  
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classifies points depending on their proximity to one of two 

parallel planes and does not contain the extensive 

computational implementation of standard SVMs [36]. 

 

II. METHODS  

A. Data Description 

In this study we examined 70 arrhythmia detection 

episodes resulted in ICD therapy, obtained from 22 ICD 

patients in the Multicenter Automatic Defibrillator 

Implantation Trial (MADIT II) [3].   Each episode consists 

of three signals: Atrial, Ventricular and Shock electrograms 

and starts with the baseline rhythm followed by the onset of 

either ventricular or supraventricular tachycardia.  

The binary ICD electrograms were converted into 

MATLAB compatible text files by using Cygwin to create a 

Unix-like environment for MS-Windows and running WFDB 

(WaveForm DataBase) library tools. Both Cygwin and 

WFDB software packages were obtained from PhysioNet 

website [37]. The rest of the processing steps are performed 

by MATLAB. 

 

B. Feature Extraction 

Feature extraction is the first important task in developing 

the SVM classifier. In this work, feature vectors are obtained 

by the following steps: 

 

1. The covariance matrix of each beat is estimated as 

defined below: 
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Where Xbeat(i) contains the time series of ith beat, nbeat(i) 

represents the length of ith beat and 
T 

denotes the transpose 

operator. Each episode consists of three electrograms: atrial, 

ventricular and shock; but in single-chamber ICDs the atrial 

electrogram is not available. Therefore, to examine the 

performance of the algorithm for both single and dual 

chamber ICDs, two implementations have been tested. In the 

first implementation, all three available electrograms have 

been used to calculate the covariance matrix whereas in the 

second implementation, only ventricular and shock 

electrograms have been included. Thus for dual-chamber 

ICDs, Xbeat(i)  is a 3-by-nbeat(i) matrix consisting of all three 
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electrograms and for single-chamber ICDs, a 2-by-nbeat(i) 

matrix containing ventricular and shock electrograms. 

The covariance matrices represent the second-order 

statistical properties of each beat, which provide more stable 

quantities for classification purposes compared to the actual 

time series. The diagonal elements show the signal power of 

each electrogram, whereas non-diagonal elements explain the 

cross-correlation between different electrograms for each 

beat. 

 

2. For each patient a number of normal heartbeats are used 

as a tuning set and the patient’s normal template is obtained 

by averaging the covariance matrices of the beats in this 

tuning set: 
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where N is the total number of normal beats in the tuning set 

and Rbeat(j) is the covariance matrix of jth beat. In this study N 

was 4. 

Since different patients have different variability within 

their normal beats, the tuning set is used to obtain a 

normalization factor: 
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Since the tuning set is acquired for each patient 

individually, normal template and normalization factor are 

unique for each patient and help the algorithm to adapt to 

each individual patient’s characteristics. 

The proposed classification rule is based on the 

assumption that supraventricular arrhythmias are less 

different from normal rhythms compared to ventricular 

arrhythmia and can be classified based on their differences 

from the normal template. So the difference of each beat’s 

covariance matrix from the normal template is calculated as 

follows: 

 

normtemplateibeatid DRRR /)( )()( −=                                (4) 

 

Normalizing to the normalization factor Dnorm, compensates 

the different variability among patients. 

 

3. The last step is constructing the feature vector from Rd. 

Since Rd is a symmetric matrix, only the upper (or lower) 

triangle is used. For single chamber implementation, Rd is a 

2-by-2 matrix and the upper triangle has 3 entries. For dual 

chamber implementation, Rd is 3-by-3 and upper triangle has 

6 entries: 
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C. PSVM Classifier 

PSVM classifies points by assigning them to the closest of 

two parallel bounding planes that are pushed apart as far as 

possible (For details refer to Fung 2001 [36]). The output of 

PSVM is a vector w and a constant γ that define the 

separating plane x
T
w=γ midway between the bounding 

planes. x and w are column vectors in the n-dimensional real 

space R
n
 (n=3 for single chamber and n=6 for dual chamber), 

x is transposed to a row vector by the transpose operator 
T
. 

Each point is then classified by [36]:    

 









∈=

∈<

∈>

−

classeitherxthen

classxthen

classxthen

wx
T

0

2,0

1,0

γ                           (6) 

 

In this study, each heartbeat’s feature vector Vd is assigned 

to either class1 (VT) or class2 (non-VT) using the above rule 

(replace x
T
 by Vd(i) for each beat).  If 3 or more beats in each 

episode are assigned to VT class, then that episode is 

classified as VT.  

 

III. RESULTS 

The proposed algorithms were tested on 70 therapy episodes 

recorded from 22 ICD patients. There were a total of 48 

SVT and 22 VT episodes. All the episodes were annotated 

by cardiologists and compared with the algorithms’ results. 

Figures 1 and 2 graphically depict examples of how VT and 

SVT episodes are classified. In both figures the top three 

graphs show atrial, ventricular and shock electrograms. The 

bottom graph displays the value of Vd(i)w-γ for each beat. If 

the value of (Vd(i)w-γ) is positive the corresponding beat is 

classified as VT. Figure 1 (VT episode) shows that how the 

(Vd(i)w-γ)s turn into positive values at the onset of VT 

whereas in figure 2 (SVT episode) they remain below zero. 

 

 

TABLE 1 

Dual Chamber Implementation 

 Training Testing 

Specificity 95.17% 93.52% 

Sensitivity 100% 100% 

 

 

TABLE 2  

Single Chamber Implementation 

 Training Testing 

Specificity 93.76% 92.33% 

Sensitivity 100% 100% 
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Figure 1- Example of a VT episode. The top three graphs show atrial, 

ventricular and shock electrograms. The bottom graph displays the value of 

Vd(i)w-γ for each beat. Beats with positive values of Vd(i)w-γ  (displayed in 

red) are classified as VT. 

 

Table 1 summarizes the results of applying the algorithm 

on all three electrograms - dual chamber implementation- 

obtained from 7-fold cross validation (with roughly the same 

proportions of VT and non-VT episodes in training/testing 

sets). In a K-fold cross validation method the dataset is 

divided into K equal sized folders and the test is repeated K 

times each time using one of the folders as testing folder and 

the others as training set. Then the average classification rate 

across all K times is computed as the final result. This way 

we can make sure that the final result is not dependent on the 

way we choose testing and training folders and each episode 

gets to be in the test set exactly once. The average sensitivity 

achieved in both training and testing sets is 100% and the 

average specificity of training and testing sets is 95.17% and 

93.52% respectively.  

For single-chamber implementation, where only 

ventricular and shock electrograms are available, the 

presented algorithm was again able to achieve 100% 

sensitivity for both training and testing and the average 0f 

93.76% and 92.33% specificity for training and testing sets, 

respectively. Results are summarized in Table 2. 

0 500 1000 1500 2000

-100

0

100

Atrial electrogram

msec

0 500 1000 1500 2000
-200

0

200

msec

Ventricular electrogram

0 500 1000 1500 2000
-50

0

50
Shock electrogram

msec

0 500 1000 1500 2000
-0.02

0

0.02
Vd*w-gamma

msec

 
Figure 2- Example of an SVT episode. The top three graphs show atrial, 

ventricular and shock electrograms. The bottom graph displays the value of 

Vd(i)w-γ for each beat. All the beats have negative values of Vd(i)w-γ and 

therefore are classified as non-VT. 

 

 

IV. DISCUSSION 

These results suggest that covariance-based SVM 

classifier may be an effective method for ICD rhythm 

classification and may decrease inappropriate shocks. The 

algorithm is applicable in both single and dual chamber ICDs 

and has a very high speed and low computational load. The 

ideal 100% sensitivity was achieved for both single and dual 

chamber implementations. Choosing a unique tuning set for 

each patient helps the algorithm to adapt to each individual 

patient’s characteristics. Since the square of the difference of 

covariance coefficients have been used to obtain the feature 

vectors, the separating plane acquired from the linear PSVM 

is equivalent to a separating ellipsoid (3-dimentional for 

single chamber and 6-dimentioanl for dual chamber ICDs) 

around the normal template. Any point outside this ellipsoid 

will be classified as VT. 

One of the limitations in this study was the small number 

of normal beats available for each patient. Having a larger 
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tuning set not only helps in obtaining more reliable normal 

templates and normalization factors, but is also useful in 

training the SVM classifier. It is worth mentioning that all 

the episodes evaluated in this study were spontaneous rather 

than induced. 

   In conclusion we have investigated the application of 

SVMs for ICD rhythm classification. The results are very 

promising and demonstrate the potential effectiveness of this 

algorithm for ICD rhythm discrimination. 
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