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Abstract— An electroencephalograph (EEG)-based brain
computer interface (BCI) requires rapid and reliable extraction
of features in EEG signal. Recently, the rhythmic component
extraction (RCE) method has been proposed to extract features
of multi-channel EEG. RCE can extract a signal component
with a certain frequency from multi-sensor signals. In this
paper, we applied RCE to extract a feature corresponding
to hand movement imagery tasks from signals measured by
EEG. This feature from a single trial EEG signal is classi-
fied between imaginary left/right hand movement EEG using
machine learning. On two subjects, our experiment shows
that the combination of RCE and fisher discriminant analysis
outperforms common spatial patterns (CSP) in classification
accuracy. It is also reported that other major classifiers together
with RCE give better performance than CSP. Additionally, we
consider the relationship between data length and classification
accuracy. It is shown that the accuracy tends to decrease as the
data length becomes small.

I. INTRODUCTION

It is crucial to extract the brain activity of humans from
measured brain signals in a brain computer interface (BCI).
Non-invasive measurement devices such as electroencephalo-
gram (EEG), magnetoencephalogram (MEG), and functional
magnetic response imaging (fMRI) are widely used to ob-
serve brain activity. Because of its simplicity and low cost,
EEG is a practical measurement device for use in engineering
applications. In general, signals measured by EEG have good
time resolution, however poor spatial resolution. Moreover,
the amplifier gain is very large, and thus the obtained signal
is highly affected by measurement noise.

BCI is a challenging application of signal processing
and neuroscience. Motor imagery-based BCI is a promising
realization [1]. Depending on the type of motor imagery,
the difference of rhythmically oscillating components in
EEG signal can be observed [2]. Therefore, this frequency
component such as alpha, mu, beta rhythm, and event related
potential are widely used as feature values in this type
of BCI system. To extract these features, methods based
on frequency analysis such as linear filtering and Fourier
analysis are widely applied [1]. For classification of tasks, the
so-called common spatial patterns (CSP), which is a method
based on learning, is also well-known [3], [4].
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In general, CSP needs frequency filtering as preprocessing
to increase classification accuracy [3]. Frequency filtering
is a classical and simple single channel processing method
to extract a specific frequency component. However, when
measuring data in a noisy environment, it is difficult to
differentiate a component generated by brain activity from
a noise-related component. Moreover, the signal extracted
by frequency filtering has only the specific frequency com-
ponent, since other frequency components in the observed
signal are discarded. This may decrease the accuracy in
motor imagery-based BCI.

The rhythmic component extraction (RCE) method does
not discard frequency components of the observed signal
[5]. Like other methods for multi-channel signal processing,
RCE extracts the target signal by using a linear combination
of the observed signals. This method uses physically well
established information, that is, frequency. However, unlike
frequency filtering, this method does not filter out frequency
components but “enhances” frequency components of inter-
est by using a simple linear combination of channel signals.
This way, RCE successfully extracts signals that have energy
mostly in the frequency of interest. We expect RCE to
increase the classification accuracy in motor imagery-based
BCI.

We tried to classify the single trial EEG signal during
imagined hand movement. RCE was able to extract a feature
value from the observed signal. In this application, the
extracted feature values are classified between left and right
hands movement. For classification, the template matching
(TM) method, the k-nearest neighbor (k-NN) method, fisher
discriminant analysis (FDA), and CSP were examined. To
compare with other feature extraction methods, we used
channel signals to which FIR band-pass filter was applied and
the Fourier spectra as feature values. Moreover, we discuss
the relationship between the data length of a signal and
classification accuracy for real-time processing.

II. THE RHYTHMIC COMPONENT EXTRACTION
(RCE) METHOD

Rhythmic component extraction (RCE) is a method for
extracting a component that concentrates its energy within
a certain frequency range by using a weighted sum of the
channel signals. This section reviews the theory of RCE
proposed in [5]. Let xi[k] (k = 0, . . . ,N − 1) be an observed
signal in the ith channel, where i = 1, . . . ,M. We extract a
signal by using a linear combination of channel signals as
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follows

x̂[k] =
M∑

i=1

wixi[k], (1)

where wi is a weight coefficient to be determined by a certain
criterion. The RCE method determines the weight coeffi-
cients in such a way that the energy in specific frequency
components of x̂[k] is as large as possible while the energy
in the other frequency components of x̂[k] is as small as
possible. This idea is formulated in the following way.

Let X̂(e− jω) be the discrete-time Fourier transform (DTFT)
of x̂[k], that is, X̂(e− jω) =

∑N−1
k=0 x̂[k]e− jωk, and let Ω1 ⊂ [0, π]

and Ω2 ⊂ [0, π] be the frequency ranges of interest and those
to be suppressed, respectively. It is sufficient to use positive
frequencies because the EEG signal is real-valued. Then, the
RCE cost function to be maximized is given as follows [5]:

J[w1, . . . ,wM] =

∫
Ω1
|X̂(e− jω)|2dω∫

Ω2
|X̂(e− jω)|2dω

. (2)

The maximization of the above cost function is reduced to a
generalized eigenvalue problem in the following way. Define
X ∈ R as [X]ik = xi[k] and matrices W1 and W2 as

[W1]l,m = <
∫
Ω1

e− jω(l−m)dω, (3)

[W2]l,m = <
∫
Ω2

e− jω(l−m)dω, (4)

respectively, where l,m = 0, · · · ,N−1 and <· takes the real-
part of the complex value. Then J[w] in (2) can be described
in the matrix-vector form as

J[w] =
wT XW1XT w
wT XW2XT w

, (5)

where w = [w1, . . . ,wM]T (·T describes the transpose). The
maximizer of J[w] is given by the eigenvector corresponding
to the maximum eigenvalue of the following generalized
eigenvalue problem:

XW1XT w = λXW2XT w. (6)

The problem can be solved by using a matrix square root of
XW2XT . Since XW2XT is symmetric, a matrix square root,
S, exists such that XW2XT = SST . Note that S is not uniquely
determined. Then, the optimal solution, w∗, is given by

w∗ = S−T ŵ, (7)

where ŵ is the eigenvector corresponding to the largest
eigenvalue of S−1XW1XT S−T , where ·−T = (·−1)T .

III. EXPERIMENTAL METHOD

We applied RCE to extract a feature from the EEG signal
during a hand grip movement imagery task. The extracted
feature values defined in Section III-B were classified by
machine learning as described in Section III-C. Moreover,
we tried to classify frame-series signals by frame processing.

Left class Right class

Visual stimulus

Relax

Imagination
of left hand
movement

Imagination
of right hand
movement

4 3 4 3 4 [sec]

T
CLASSIFICATION

Fig. 1. The timing of the movement imagery task. The stimulus in form
of an arrow gives the side of imagination and appears at repeat. An EEG
signal of each trial for classification is observed 1s after the indication of
the stimulus.

GND

A1A2

C1 C2C3 C4C5 C6T7 T8

CP1 CP2CP3 CP4CP5 CP6

Fig. 2. The location of electrodes (International 10/10 system notation).

A. Data acquisition

Two healthy, male, right-handed subjects (age 22) took
part in this experiment (subject S1 and S2). The subjects
were seated in an armchair and watched a monitor. They
were asked to keep their arms and hands relaxed. Depending
on the direction of the arrow on the monitor, the subject
was instructed to imagine a movement of their left or right
hand as shown in Fig. 1. The subject’s tasks were shown as
follows.

1) The subject gazes at a fixation cross in the monitor.
2) After 3s, an arrow is presented on the monitor, and

the subject imagines the one hand griping for 4s (the
arrow was presented at repeat).

3) The fixation cross is presented, and the imagination is
discontinued.

4) Return to 1).
EEG signals were recorded with 14 Ag/AgCl electrodes

located around motor cortex areas as illustrated in Fig. 2
(reference: A1+A2, ground: forehead). The EEG signals were
amplified and filtered in the frequency band of 0.08–100Hz
by MEG-6116 (NIHON KOHDEN). Moreover, amplified
signals were digitized at 500Hz by A/D converter, AIO-
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163202F-PE (CONTEC). A set of EEG signals for classi-
fication consists of “left” class and “right” class for each of
100 trials. A one trial signal in this set was the observed
signal after 1s from the visual stimulus. T (shown in Fig. 1)
denotes the number of samples in this range (data length).

B. Feature values

For classification, we should extract feature values corre-
sponding to each imaginary task of the subject. We tried to
extract rhythmically oscillating components such as mu and
beta rhythm by using the following methods.

1) Band-pass signal: The band-pass signal, X f1− f2 is the
observed signals to which FIR band-pass filter in a f1− f2Hz
frequency band was applied, that is, X f1− f2 ∈ RM×N as
[X f1− f2 ]ik = x′i [k] (k = 0, . . . ,N − 1) where x′i (i = 1, . . . ,M)
is the band-pass signal of the ith channel and N is the data
length. The order of the FIR filter was 100 in this experiment.

2) Fourier spectra of observed signals: The Fourier spec-
trum, fi[k] was obtained by discrete Fourier transform (DFT)
of the ith channel signal. We define F as [F]ik = fi[k]. Then
F f1− f2 ∈ RM×N f is obtained from F of the frequency range
of f1 − f2Hz. N f is the length of the spectrum and depends
on the sampling frequency and the data length.

3) Correlation coefficient by RCE: ci is correlation coeffi-
cient between the ith channel signal and the signal extracted
using RCE. Then correlation coefficient, c between all chan-
nel signals, X and the extracted signal, x̂ can be described
as c = Xx̂T , where c = [c1, . . . , cM]T .

C. Classification methods

1) TM: The TM method classifies input data by evaluating
the distance between the input data and templates belonging
to a given class. In this paper, we used the mean value of
learning data as the templates. The Euclidean distance was
used as the definition of the distance.

2) k-NN: The k-NN method classifies input data by eval-
uating the distance between the input data and all learning
data. The class of the input data determined as the majority
of the k learning data that are nearest from to input data. In
this paper, we used the Euclidean distance, and k was 5.

3) FDA: FDA constructs a linear dimension reduction
from the input vector, x to a new feature value, y. A weight
vector for reduction of linear dimensions was obtained by
maximizing the inter-cluster distance between each class and
minimizing the intra-cluster distance within a given class
in the new dimension space. In this paper, input data was
classified by evaluation of the distance between the threshold
and the projected input data. We used the mean value of
learning data projected onto the new dimension space as the
thresholds.

4) CSP: CSP finds the direction which the observed sig-
nal should be projected onto so that the differences between
any two classes are maximized (i.e. the variance of one class
is minimized while at the same time, the variance of the other
class is maximized) [3]. The directions are given by a weight
vector whose rows give the weight of the channels. Useful
features can be extracted from the EEG signal and then
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Fig. 3. ERD during imagined left (top) and right (bottom) hand movement
in S1. The base of the power was the average of the power in “relax” task.
The ERD were the average over 100 trials.

TABLE I
The classification accuracy for each method. The data length was 1s and
the accuracy rate is given by using 5-fold cross validation. (Sbj; Subject)

Accuracy [%]
Sbj Feature value TM 5-NN FDA CSP
S1 Band-pass X12−15 51.0 64.5 52.2 82.5

Fourier spectra F12−15 67.1 62.9 77.3 50.5
RCE (12–15Hz) c 81.1 82.8 83.1

S2 Band-pass X12−15 50.5 50.9 51.9 70.1
Fourier spectra F12−15 63.2 58.6 68.1 51.1

RCE (12–15Hz) c 71.8 67.1 74.9

used for classification. In this paper, we extracted two spatial
filters, wp (p = 1, 2) from the learning data. wp minimizes the
variance of the extracted signal corresponding to each class.
Thus we can obtained two extracted signals corresponding
to wp respectively from the input data. By comparing the
variances between each of the extracted signals, the class of
the input data can be determined.

IV. RESULTS AND DISCUSSION

A. Brain activity during hand movement imagery

Figure 3 shows event-related desynchronization (ERD) in
two electrodes (CP3 and CP4). The arrow was presented and
the subject started the imagination of one hand movement at
0s. EEG signals were filtered to 8-26Hz before averaging. We
can observe a decrease in power while the subject imagines
the hand movement. In “right” task, the degree of this
decrease in each electrode was different. This result suggests
that the EEG signal during hand movement imagery can be
classified by using the amplitude of the specific frequency
range as the feature value.

B. Classification result

Table I shows the classification accuracy of two subjects
for each set of feature values and each classification method.
The data length of each trial was 1s and the accuracy rate
was given by using 5-fold cross validation. We chose 12–
15Hz as the frequency band of interest. This band was
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Fig. 4. The classification accuracy for changing data length in S1. The
frequency range of interest is 12–15Hz. The accuracy rate is given by using
5-fold cross validation.

determined to provide the best performance for each clas-
sification method. For both subjects, the best classification
accuracy was obtained using the combination of RCE and
FDA. In addition, RCE was able to obtain good performance
using the TM method and the k-NN method, which are
comparatively simple methods. This result shows that RCE
extracts important features corresponding to the imaginary
tasks of hand movement.

C. Frame length

In the development of BCI, it is important to get a quick
response to an imaginary input by the user. To this end,
feature extraction and classification is needed in a short time
range. Figure 4 shows the classification accuracy for the data
length in S1. We can observe that the accuracy depends on
the data length. The accuracy tends to increase as the data
length becomes large in both methods.

We tried to apply RCE to a frame-series signal. The
extracted feature was classified to relax, left, and right
classes using FDA. To apply RCE to frame processing, we
used adaptive RCE with regularization proposed in [6]. This
method considers the correlation between the extracted sig-
nals of the previous and current frames to avoid the disconti-
nuity in two successive frames. The time of the classification
result corresponds to the last time contained in the current
frame. Figure 5 shows an example of the classification result.
We can observe slight incorrect classification and timing in
this example. The timing of classification depends on the
subject state of imagery. However, we can observe some
delays in classification results, and it is shown that the speed
of the response is influenced by the frame length. The result
of frame processing suggests that an optimization extents
of the frame length is needed to extract specific frequency
components in EEG signals.

V. CONCLUSIONS AND FUTURE WORK

In this study, we used RCE to extract the features of a
multi-channel EEG signal. The RCE method can extract a
signal oscillating with a certain frequency from multi-sensor
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Imaginary task of subject

Classification result

Fig. 5. The classification result by frame processing in S1. The frame
length was 1s and the time delay between successive two frames is 0.2s.
The feature value by RCE (12–15Hz) was classified to three classes (relax,
left, and right) by FDA, and the number of learning data was 190, 95, and
95 trials for each class, respectively.

signals. We tried classification of the single trial EEG signals
during imaginary left/right hand movement by using RCE
and machine learning. In the case of our experiment, the
difference of EEG signal between imaginary left and right
hand movement were concentrated in the frequency band
of 12–15Hz. In classification accuracy, the combination of
RCE and FDA performed slightly better than other methods.
Even though this experiment is only performed for two
subjects, the result suggests that RCE is effective method for
feature extraction in the classification of this type of EEG
signal. Moreover, we showed the relationship between the
data length of the EEG signal and the classification accuracy
and discussed the importance of optimizing the data length
in real-time processing. Though the classification accuracy
tends to increase as the data length becomes large, the system
may lack quick response.

For future work, we should confirm the influence of visual
responses, because we used the visual stimulus for indication
to the subject. In addition, more subjects may be needed to
clarify the performance of RCE. Moreover, we will develop
a real-time processing system using RCE for BCI.
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