
  

  
Abstract—Standard sleep stage classification is based on 

visual analysis of central (usually also frontal and occipital) 
EEG, two-channel EOG, and submental EMG signals.  The 
process is complex, using multiple electrodes, and is usually 
based on relatively high (200-500 Hz) sampling rates. Also at 
least 12 bit analog to digital conversion is recommended (with 
16 bit storage) resulting in total bit rate of at least 12.8 kbit/s. 
This is not a problem for in-house laboratory sleep studies, but 
in the case of online wireless self-applicable ambulatory sleep 
studies, lower complexity and lower bit rates are preferred.  In 
this study we further developed earlier single channel facial 
EMG/EOG/EEG-based automatic sleep stage classification. An 
algorithm with a simple decision tree separated 30 s epochs into 
wakefulness, SREM, S1/S2 and SWS using 18-45 Hz beta 
power and 0.5-6 Hz amplitude. Improvements included low 
complexity recursive digital filtering. We also evaluated the 
effects of a reduced sampling rate, reduced number of 
quantization steps and reduced dynamic range on the sleep 
data of 132 training and 131 testing subjects. With the studied 
algorithm, it was possible to reduce the sampling rate to 50 Hz 
(having a low pass filter at 90 Hz), and the dynamic range to 
244 µV,  with an 8 bit resolution resulting in a bit rate of 0.4 
kbit/s.  Facial electrodes and a low bit rate enables the use of 
smaller devices for sleep stage classification in home 
environments.  

I. INTRODUCTION 
LEEP staging is an important instrument in clinical and 
research sleep studies. Based on recent standards, sleep 

stage classification is carried out visually based on frontal, 
central and occipital EEG, two-channel EOG, and submental 
EMG [1].  In the old standard, only a single central EEG 
channel was required with EOG and EMG [2]. The 
minimum required sampling rates are 200 Hz (500 Hz 
desired) and at least 12 bits per sample [1]. Usually, data is 
stored with a 16 bit resolution [3, 4]. This results in a total 
bit rate of at least 12.8 kbit/s. The recording process is also 
complex. In particular, the placement of multiple EEG 
electrodes within the hairline and visual analysis of signals 

 
Manuscript received April 23, 2009 and revised June 20, 2009. Jussi 

Virkkala is with Sleep Laboratory, Finnish Institute of Occupational Health, 
Helsinki, Finland and Department of Clinical Neurophysiology, Medical 
Imaging Centre, Pirkanmaa Hospital District, Tampere, Finland, phone: 
+358-40-5680360, fax: +358-9-5884759, e-mail: jussi.virkkala@ttl.fi, 
www: neuroupdate.com. Alpo Värri is with Department of Signal 
Processing, Tampere University of Technology, Tampere, Finland (e-mail 
alpo.varri@tut.fi). Joel Hasan and Sari-Leena Himanen are with Department 
of Clinical Neurophysiology, Medical Imaging Centre, Pirkanmaa Hospital 
District, Tampere, Finland (e-mail joel.hasan@pshp.fi, sari-leena.himanen 
@pshp.fi). Kiti Müller is with Finnish Institute of Occupational Health, 
Helsinki, Finland (e-mail kiti.muller@ttl.fi) 

 

are laborious tasks requiring trained personnel.  
 Various alternatives exist for estimating sleep structure, 
which are easier than the standard procedure based on this 
visual analysis of EEG, EOG and EMG. Some methods are 
based on single-channel central EEG [5], EOG  [6-8] or 
forehead EEG analysis [9-11]. Sometimes only averaged 
features and calculated results are stored [12], and no raw 
data. Some limited analyses can also be performed without 
placing EEG electrodes. The measurement of movements of 
limbs - actigraphy - is a clinically accepted measure for sleep 
assessment [13]. Separation of wakefulness, SREM and 
NREM can only be performed using ECG information [14, 
15] and wakefulness and sleep separation only using 
respiration [16].  

There is an apparent gap in technologies between simple 
movement sensors and standard polysomnography. In other 
fields, established limited techniques exist, such as 
amplitude-integrated EEG for long term monitoring [17]. 
Sleep recording systems with low bit rates would result in 
lower power usage and thus lower size. Storage of raw data 
is however essential for applying different algorithms and 
for visual confirmation of the analysis. Bit rate can be 
reduced through various paths: 1) by reducing the number of 
recorded channels, 2) by reducing the sampling rate, and 3) 
by reducing the number of bits used to represent the selected 
dynamic range.  

In our previous study [8] we developed single-channel 
analysis for separating wakefulness, SREM, S1/S2 and SWS 
epochs. The  results obtained in validation data using a low 
dynamic range (300 Hz, 8 bit, ±260 µV) device were almost 
identical to those using a higher dynamic range (200 Hz, 16 
bit, ±7.8 mV) device [8], which we had not anticipated. As 
the validation was made on different subjects in the previous 
study, we used the same data and simulated the effects of 
reducing sampling rate, reducing both quantization steps and 
the dynamic range in this study.  

We also implemented a low complexity recursive infinite 
impulse response (IIR) filter instead of the originally used 
discrete Fourier transform (DFT) and inverse discrete 
Fourier transform (IDFT) approach. Low complexity 
analysis would be beneficial for the implementation of real 
time analysis in portable devices. 

 

II. SUBJECTS 
The single-channel algorithm was further developed and 

tested on data previously used for preliminary single-channel 
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algorithms [8]. A total of 132 subjects' (age 26-61) data were 
used to train the algorithm and 131 different subjects' (age 
28-60) data were used to test the trained algorithm.  

III. METHODS 

A. Equipment and visual scoring 
Data was recorded in a sleep laboratory with Embla A10 

(Embla, Broomfield, USA), at a bandwidth of 0.5-90 Hz and 
sampling rate of 200 Hz. The system has a 16 bit resolution, 
and a 238 nV/bit resolution was used. Thus the dynamic 
range was from -(215·238) nV=-7.8 mV to (215-1)·238 
nV=7.8 mV. Data was recorded according to the standard [2] 
with central EEG, two-channel EOG and submental EMG. 
The recordings were visually scored according to the 
common standard [2] by an experienced sleep technologist. 
Automatic single-channel analysis was based on left EOG 
(slightly lateral and 1 cm up from the outer canthus) 
referenced to the right EOG (slightly lateral and 1 cm down 
from the outer canthus).  

B. Sleep stage determination 
The applied sleep staging algorithm is an extension of a 

previously published method [8]. The analysis was carried 
out at 0.5 s intervals using overlapping 2 s segments for 
visually scored 30 s epochs. The reference analysis was 
performed using DFT (for 18-45 Hz beta) and IDFT (for 0.5-
6 Hz peak-to-peak amplitude). 

 The new analysis was based on a Butterworth IIR filtered 
signal. The IIR filter order was 2 for the 0.5-6 Hz band and 4 
for the 18-45 Hz band. For each segment, a 0.5-6 Hz filtered 
peak-to-peak amplitude and 18-45 Hz beta power were 
calculated after the Hann window was applied. With the IIR 
approach, the beta power was calculated as squared sum of 
filtered and window-applied signal segments. With 50 Hz 
resampled and aliased signal instead of 18-45 Hz band pass 
filter high pass filter with 18 Hz cutoff was used. The 30 s 
epoch stages were determined by the following criteria: 

 
ST  The number of segments (density) with below-

threshold beta power values had to be above 
threshold. The beta power threshold was either 
fixed (online approach) or was based on the 
median beta value of the subject's data (this 
automatically obtained value was added to fixed 
threshold, offline approach).  Used for separation 
of SREM, S1/S2, SWS from W. 

NREM The maximum amplitude difference of the 0.5-6 
Hz peak-to-peak amplitude values within a 30 s 
epoch had to be below threshold. Only amplitudes 
with a beta power below threshold were 
considered.  If SREM was detected, 11 adjacent 
epochs (if not detected as awake) were also 
automatically marked as SREM. Used for 
separation of S1/S2, SWS from SREM. 

SW3T The number of segments (density) with an above- 
threshold 0.5-6 Hz peak to peak amplitude and 

beta below another threshold had to be above 
density threshold. Used for separation of SWS 
from S1/S2. 

 
The original analysis had five parameters [8]. Here, two 

additional beta thresholds were added to the NREM and to 
SW3T estimation, and the beta band was extended to 18-45 
Hz from 18-30 Hz. SREM detection affected 11 adjacent 
epochs rather than the 3 in the original analysis.  For each 
ST, NREM and SW3T optimal thresholds were sought (for 
largest Cohen's Kappa) separately for the corresponding 
binary decisions, using the data of the training data set. All 
seven parameters (ST: beta threshold, segment density 
threshold; NREM: amplitude and beta threshold; SW3T: 
amplitude and beta threshold, segment density threshold) 
were fixed across subjects. A simple, three-step, decision 
tree was used in the final sleep stage estimation [8].  

C. Simulation 
Dynamic range was modified by clipping data to be between 
-(2n·238) nV and (2n-1)·238 nV, where n is an integer. 
Another reduction of bit rate was carried out by rounding 
values to the closest values of 2n ·238 nV, where n is the 
integer.  For instance, ±244 µV range with a 1.9 µV 
quantization step corresponds to 8 bit. Resampling both with 
and without anti-aliasing filter was performed before 
dynamic range modifications.  

D. Statistical analysis 
An automatic detection of 30 s epochs was compared to 

the visual scoring based on the standard method [2]. 
Agreement 

Op  and Cohen's Kappa κ  [18] were used to 
evaluate the detection. Cohen's Kappa is the proportion of 
agreement after change agreement cp  is removed from 
consideration. Using probabilities ijp  from the agreement 

matrix, κ can be defined as.             
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The Cohen Kappa values reported are from agreement 
matrix with all testing data pooled together. Statistical 
differences in Cohen's Kappa values between different 
methods are calculated using a pair-wise comparison of 
subject Cohen's Kappa values using The Wilcoxon Signed 
Ranks Test.  

IV. RESULTS 
All reported results are from the testing data set after 

optimization of parameters using different training data sets. 
With the extended DFT and IDFT method four-stage 
separation agreement with the fixed beta was 75% (Cohen's 
Kappa 0.61) and with the offline adjusted beta threshold, 
agreement was 77% (Cohen's Kappa 0.63), Table I. Using 
butterworth IIR filtering and the original 200 Hz data 
agreement, 74% and 77% (Cohen's Kappa 0.60 and 0.63) 
were obtained, as shown in Table II. In all tables, PPV 
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indicates positive predictive value. 

 

 
With resampling to 50 Hz, 8-bit sampling, and ±244 µV 

dynamic range agreements were 72% and 75% (Cohen's 
Kappa 0.57 and 0.61), Table III. With resampling to 50 Hz 
without an anti-aliasing filter, corresponding agreements 
were 75% and 77% (Cohen's Kappa 0.61 and 0.64), as Table 
IV shows. Cohen's Kappa using the 50 Hz resampled IIR 
method was lower than that of the 200 Hz, or the 50 Hz 
aliased IIR method. 

V. DISCUSSION 
Many different methods exist for automatic sleep stage 

classification. Most methods are complex with multiple 
EEG, EOG and EMG electrodes, or only distinguish 
between wakefulness and sleep or wakefulness, SREM and 
NREM. In this study, an automatic single-channel EOG 

algorithm was further developed for separating wakefulness, 
SREM, light sleep (S1/S2), and deep sleep (SWS). 
Electrodes were placed at a standard location [2] to record 
EMG, EOG and EEG activity. Wakefulness was detected 
using EMG beta (18-45 Hz) activity, SREM based on high 
amplitude 0.5-6 Hz activity (assumed to be eye movements) 
and SWS based on medium amplitude 0.5-6 Hz activity.  

 

 

 
In our previous study, DFT and IDFT was used to 

calculate beta power and peak-to-peak amplitudes 
respectively. In this study, low order IIR filtering was used, 
resulting in lower complexity of the algorithm and making it 
more suitable for online applications.  

With a 50 Hz sampling rate, Cohen's Kappa was smaller 
using the resampled IIR method but not with the aliased IIR 
method. Possible folding of powers >25 Hz resulted in 
optimal frequency weighting. This folding has been used by 

TABLE  IV 
AGREEMENT MATRIX FOR TESTING DATA SET USING ALIASED IIR 
METHOD. ROWS REPRESENT STANDARD VISUAL ANALYSIS AND 

COLUMNS AUTOMATIC SINGLE-CHANNEL ANALYSIS 

Wake SREM S1/S2 SWS Sensitivity
Wake 14518 1919 4820 124 67.9%
SREM 2274 16973 4731 43 70.7%
S1/S2 6394 4284 58212 4142 79.7%
SWS 593 343 3796 11723 71.2%
PPV 61.1% 72.2% 81.3% 73.1%
Agreement 75.2%
Cohen's Kappa 0.61

WITH OFFLINE BETA THRESHOLDS 
Wake SREM S1/S2 SWS Sensitivity

Wake 15015 1717 4547 102 70.2%
SREM 1582 17297 5101 41 72.0%
S1/S2 4947 4305 59650 4130 81.7%
SWS 352 343 4045 11715 71.2%
PPV 68.6% 73.1% 81.3% 73.3%
Agreement 76.9%
Cohen's Kappa 0.64

TABLE  III 
AGREEMENT MATRIX FOR TESTING DATA SET USING RESAMPLED IIR 

METHOD. ROWS REPRESENT STANDARD VISUAL ANALYSIS AND 
COLUMNS AUTOMATIC SINGLE-CHANNEL ANALYSIS 

Wake SREM S1/S2 SWS Sensitivity
Wake 14287 2458 4312 324 66.8%
SREM 3965 15616 4366 74 65.0%
S1/S2 9097 4448 55121 4366 75.5%
SWS 872 295 3444 11844 72.0%
PPV 50.6% 68.4% 82.0% 71.3%
Agreement 71.8%
Cohen's Kappa 0.57

WITH OFFLINE BETA THRESHOLDS 
Wake SREM S1/S2 SWS Sensitivity

Wake 14611 2247 4245 278 68.3%
SREM 2948 16237 4765 71 67.6%
S1/S2 5377 4552 58657 4446 80.3%
SWS 269 299 3912 11975 72.8%
PPV 63.0% 69.6% 81.9% 71.4%
Agreement 75.2%
Cohen's Kappa 0.61

TABLE  II 
AGREEMENT MATRIX FOR TESTING DATA SET USING IIR METHOD. ROWS 
REPRESENT STANDARD VISUAL ANALYSIS AND COLUMNS AUTOMATIC 

SINGLE-CHANNEL ANALYSIS.  
Wake SREM S1/S2 SWS Sensitivity

Wake 15330 1766 4100 185 71.7%
SREM 2893 16398 4664 66 68.3%
S1/S2 8403 3858 55933 4838 76.6%
SWS 974 225 3174 12082 73.4%
PPV 55.5% 73.7% 82.4% 70.4%
Agreement 73.9%
Cohen's Kappa 0.60

WITH OFFLINE BETA THRESHOLDS 
Wake SREM S1/S2 SWS Sensitivity

Wake 15392 1668 4137 184 72.0%
SREM 1846 16856 5258 61 70.2%
S1/S2 5499 3927 58736 4870 80.4%
SWS 427 227 3654 12147 73.8%
PPV 66.4% 74.3% 81.8% 70.4%
Agreement 76.5%
Cohen's Kappa 0.63

TABLE  I 
AGREEMENT MATRIX FOR TESTING DATA SET USING DFT METHOD. 

ROWS REPRESENT STANDARD VISUAL ANALYSIS AND COLUMNS THE 
AUTOMATIC SINGLE CHANNEL ANALYSIS. 

Wake SREM S1/S2 SWS Sensitivity
Wake 14337 1981 4800 263 67.1%
SREM 2285 17377 4303 56 72.3%
S1/S2 6278 4443 57826 4485 79.2%
SWS 481 372 4030 11572 70.3%
PPV 61.3% 71.9% 81.5% 70.7%
Agreement 75.0%
Cohen's Kappa 0.61

WITH OFFLINE BETA THRESHOLDS 
Wake SREM S1/S2 SWS Sensitivity

Wake 15378 1629 4151 223 71.9%
SREM 1948 17443 4574 56 72.6%
S1/S2 5229 4408 58934 4461 80.7%
SWS 345 375 4179 11556 70.2%
PPV 67.2% 73.1% 82.0% 70.9%
Agreement 76.6%
Cohen's Kappa 0.63
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e.g. Ehlert et al. in sleep staging [11] and more commonly in 
EMG analysis [19]. Excluding the anti-aliasing filter will 
change the time domain properties of the high frequency part 
of the signal and should be used with caution.  

It has to be emphasized that the current setup using two 
facial electrodes is not optimal for recording lower 
amplitude EEG activity such as spindle and alpha activity. 
These activities are better recorded with an EEG electrode 
on the central and occipital region. With different electrode 
configurations and algorithms utilizing spindle and alpha 
activity, different results are likely to occur by lowering the 
bit rate or by excluding the anti-aliasing filter.  

Despite this, the results obtained here suggest that low 
complexity (single-channel, self-applicable facial electrodes, 
simple algorithm) and low bit rate automatic sleep staging 
should be evaluated as a complementary technique between 
various movement sensors and ambulatory 
polysomnography. Other techniques based on, for instance 
heart rate and respiration, are complementary, enabling for 
instance studies of heart rate in different sleep stages. 

VI. CONCLUSION 
With the studied low complexity single-channel algorithm 

using two facial electrodes it was possible to reduce the bit 
rates without any significant effect on sleep classification 
agreement. Reduction was achieved by reducing the 
sampling rate from 200 Hz to 50 Hz, using only 8-bit 
quantization instead of 16-bit and by limiting the dynamic 
range to ±244 µV. The initial implementation of developed 
algorithms for online analysis has been carried out [20].   

Wireless techniques exist for high bit rates, but lower 
complexity and lower bit rates will reduce power usage and 
thus also the system size. A smaller device would make it 
easier and more comfortable to record multiple nights, 
complementing the diagnostic laboratory sleep recordings 
and enabling large scale field sleep studies.  
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