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Abstract— In this paper, we consider the use of Modulation
Spectra for voice pathology detection and classification. To
reduce the high-dimensionality space generated by Modulation
spectra we suggest the use of Higher Order Singular Value De-
composition (SVD) and we propose a feature selection algorithm
based on the Mutual Information between subjective voice
quality and computed features. Using SVM with a radial basis
function (RBF) kernel as classifier, we conducted experiments
on a database of sustained vowel recordings from healthy and
pathological voices. For voice pathology detection, the suggested
approach achieved a detection rate of 94.1% and an Area
Under the Curve (AUC) score of 97.8%. For voice pathology
classification, an average detection rate and AUC of 88.6% and
94.8%, respectively, was achieved in classifying polyp against
keratosis leukoplakia, adductor spasmodic dysphonia and vocal
nodules.

I. INTRODUCTION

Many studies in voice function assessment try to identify

acoustic measures or cues that highly correlate with patho-

logical voice qualities (also referred to as voice alterations).

Organic pathologies that affect vocal folds usually modify

their morphology resulting in abnormal vibration patterns

and increased turbulent airflow at the level of the glottis [6].

Examples of acoustic parameters trying to quantify the glottal

noise include pitch, jitter, shimmer, amplitude perturbation

quotient (APQ), pitch perturbation quotient (PPQ) and glottal

to noise excitation (GNE)([7], [22], [18] and references

within).

Some of the suggested features require accurate estima-

tion of fundamental frequency, which is not a trivial task

in the case of certain pathologies. Moreover, since these

features refer to the glottal activity an estimation of the

glottal airflow signal is required. This can be obtained either

by electroglottography (EGG) [8] or by inverse filtering

of speech [21] [23] where an estimate of the excitation

waveform to the vocal tract model is obtained. Based on the

second approach, spectral related features have been defined

such as the spectral flatness of the inverse filter (SFF) and

the spectral flatness of the residue signal (SFR) [7]. SFF and

SFR can be considered as a measure of the noise masking

formants and harmonics, respectively [22].

The estimation of the glottal signal or the residual signal

(excitation to the vocal tract) or measurements of glottal

activity (for example, by using EGG) are quite questionable.

Assuming that speech signal is produced based on linear
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systems theory, then it is expected that perturbations at the

glottal level will affect the spectral properties of the recorded

speech signal. In this case, an estimation of the glottal signal

can be avoided. Then, however, another difficult problem

is created; that of features identification in the speech sig-

nal, which reflect the activity of the glottal source. There

have been suggested both parametric and non parametric

approaches for this, and in general, these approaches can

be referred to as Waveform Perturbation methods (even if

they only work with a partial information of the waveform,

i.e., magnitude spectrum, frequency perturbations, etc.). The

parametric approaches are based on the source filter theory

for the speech production and on the assumptions made

for the glottal signal [3]. The non parametric approaches

are based on magnitude spectrum of speech where short-

term mel frequency cepstral coefficients (MFFC) are widely

used in representing the magnitude spectrum in a compact

way [1] [2] [9]. The non parametric approaches also include

time-frequency representations as the one suggested in [19].

Correlation of the various suggested features and represen-

tations with voice pathology is evaluated using techniques

like linear multiple regression analysis [22], or likelihood

scores using Gaussian Mixture Models (GMM) [1] [9] and

Hidden Markov Models (HMM) [2]. Also neural networks

and Support Vector Machines based classifiers have been

suggested [10] [12].

There have been a few approaches towards separating

different kinds of voice pathologies. Linear Prediction de-

rived measures were found inadequate for making a finer

distinction than the normal/pathological voice discrimina-

tion [22]. In [23] after applying an iterative residual signal

estimator features like jitter have been computed. Jitter

provided the best classification score between pathologies

(54.8%)(21 pathologies). In [2], an HMM approach, using

MFCC, provided an average score of correct classification

of 70% (5 pathologies). A recent study for discrimination

of voice pathologies was carried out via adaptive growth

of Wavelet Packet tree, based on the criterion of Local

Discriminant Bases (LDB) [12]. A genetic algorithm was

employed to select the best feature set and then a Support

Vector Machines (SVM) based classifier was used.

In this work we suggest the use of modulation spectra

for detection of voice pathologies [11], [5]. Modulation

spectral features have been employed for single-channel

speaker separation [4], as well as for speech and speaker

recognition [13]. Modulation spectra may be seen as a non-

parametric way to represent the modulations in speech.

Moreover, it offers an implicit way to fuse the various
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phenomena observed during speech production, in a com-

pact way. Still, modulation spectra contain a large amount

of features, posing serious problems for the classification

algorithms. The initial representation is first transformed

to a lower-dimensional domain using Higher Order SVD.

For features relevant to pathology selection, the mutual

information between voice quality and features mapped in

the transformed domain, is estimated. Specifically we use

the maximal relevance (MaxRel) feature selection criterion

which simply selects the features most relevant to a target

class. Projection of the relevant features back to the original

space reveals the modulation spectral components which can

discriminate normal from abnormal voices, or different voice

pathologies. Simulations carried out on MEEI database [17]

show that the modulation spectral features are useful in

assessing vocal impairment as well as making finer classi-

fications than the normal versus abnormal classification. In

the following, we will refer to our method as Modulation

Spectra and Maximal Relevance (MSMR) method.

II. MODULATION SPECTRA AND MAXIMAL RELEVANCE

- MSMR

A. Modulation Spectra

The most common modulation frequency analysis frame-

work [4] for a discrete signal x(n), initially employs a short-

time Fourier transform (STFT) Xk(m)

Xk(m) =
∞

∑
n=−∞

h(mM−n)x(n)W kn
K , (1)

k = 0, . . . ,K −1,

where WK = e− j(2π/K) and h(n) is the acoustic frequency

analysis window with a hop size of M samples. Subband

envelope detection - defined as the magnitude |Xk(m)| or

square magnitude of the subband - and their frequency

analysis with Fourier transform are performed next:

Xl(k, i) =
∞

∑
m=−∞

g(lL−m)|Xk(m)|W im
I , (2)

i = 0, . . . , I −1,

where g(m) is the modulation frequency analysis window

and L the corresponding hop size (in samples); k and i are

referred to as the “Fourier” (or acoustic) and “modulation”

frequency, respectively. Tapered windows h(n) and g(m) are

used to reduce the side lobes of both frequency estimates.

A modulation spectrogram representation then, displays

modulation spectral energy |Xl(k, i)| (magnitude of the sub-

band envelope spectra) in the joint acoustic/modulation fre-

quency plane.

In Fig. 1 modulation spectrogram of a 262 ms long

frame from a normal male speaker from MEEI database [17]

is shown. We can observe the modulation frequency lo-

calization of strongest formant and the acoustic frequency

localization of pitch energy.

In Fig. 2 two examples of voice pathologies are shown for

(a) a male speaker with vocal polyps and (b) for a woman

with adductor spasmodic dysphonia.
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Fig. 1. Modulation spectrogram of sustained vowel /AH/ by a 34 years
old normal male speaker.

B. Dimensionality reduction

Modulation spectra were computed in a frame-by-frame

basis using relatively long windows in time (262 ms) which

were overlapping. Each modulation spectrum consisted of

I1 = 257 acoustic frequencies and I2 = 257 modulation

frequencies, resulting therefore in a 257 × 257 image per

frame. The modulation spectra computed in each frame were

mean subtracted and then, they were stacked to produce a a

third order tensor D ∈ RI1×I2×I3 , where I3 is the number of

frames in the training dataset.

We used a generalization of SVD to tensors referred to

as Higher Order SVD (HOSVD) [15] which enables the de-

composition of tensor D to its n−mode singular vectors (or,

principal components). Ordering of these n−mode singular

values implies that the “energy” of tensor D is concentrated

in the singular vectors with the lowest indices. Each singular

matrix containing the n−mode singular vectors, can be

truncated then by setting a predetermined threshold so as

to retain only the desired number of principal axes in each

mode. The contribution of the jth principal component (PC)

of the acoustic or modulation frequency-subspace Si whose

corresponding eigenvalue is λi, j, is defined as:

αi, j =
λi, j

∑
Ni
j=1 λi, j

(3)

where Ni is the dimension of Si - 257 for acoustic frequency

and 257 for modulation frequency.

Next, we detected the near-optimal projections (PCs) of

features among those contributing more than 0.2% to the

“energy” of D . That is, we examined the relevance to the

target class of the first 34 PCs in the acoustic frequency and

the first 34 PCs in the modulation frequency subspace.

C. Feature Selection based on Mutual Information

We selected among the 34×34 = 1156 features the ones

which were more relevant to a given classification task using

mutual information (MI). Specifically we used the maximal

relevance (MaxRel) [20] feature selection criterion which
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(a) Vocal Polyp
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(b) Adductor spasmodic dysphonia

Fig. 2. Modulation spectrogram on sustained vowel /AH/ of : (a) a 33 years old male speaker with vocal polyps (∼ 129 Hz fundamental frequency), (b)
a 49 years old woman with adductor spasmodic dysphonia - the maximum is not located at the pitch value in the second case (∼ 113.6 Hz fundamental
frequency).

simply selects the features most relevant to the target class

c. Relevance is usually defined as the mutual information

I(x j;c) between feature x j and class c. Through a sequential

search which does not require estimation of multivariate

densities, the top m features in the descent ordering of I(x j;c)
were selected in every case.

III. RESULTS

We have evaluated features of the modulation spectrogram

of sustained vowel /AH/ from MEEI, for voice pathology

detection and classification tasks. For the pathology detection

experiments, a subset of the database (53 normophonic,

173 dysphonic speakers) was used in order to cover as

many as possible disorders while at the same time the

normophonic and dysphonic classes to have similar age and

sex distributions [19]. For voice pathology classification, we

selected from the whole MEEI database the same subset

of pathologies as the one used in [12]: vocal fold polyp,

adductor spasmodic dysphonia, keratosis leukoplakia, and

vocal nodules. There were 88 such cases in the database. Five

persons exhibited two of the above pathologies at the same

time and they were excluded. All the tests were conducted

on signals sampled at 25 kHz. For classifier, we used SVM

with a radial basis function (RBF) kernel. We used 4-fold

stratified cross-validation, repeated 400 times. The classifier

was trained on the 75% of normal and pathological speakers

then tested using the rest 25% and provided a decision per

segment. Then, for utterance classification the median of the

decisions over its segments was computed.

For evaluation, we used detection error trade-off (DET)

curves since DET curves present more accurately than

Receiver Operating Characteristic (ROC) curves the per-

formance of the different assessment systems at the low

error operating points [16]. The optimal detection accuracy

(DCFopt ) occurs when the sum of Type I and Type II errors

is minimum. For the voice pathology detection task, we

TABLE I

CLASSIFICATION SCORES PER TASK USING m FEATURES SELECTED BY

THE MAXREL CRITERION FOR THE SUGGESTED APPROACH (MSMR).

THE CORRESPONDING BEST DISCRIMINATION RATES ON THE SAME

DATASETS REFERRED TO IN THE LITERATURE ARE LISTED IN THE LAST

COLUMN OF THE TABLE.

MSMR
DCFopt (%) AUC (%) m DR (%)

Normal/Pathol 94.08±0.86 97.75 25 94.07±3.28 [9]

Polyp/Adductor 88.33±2.64 95.74 60 82.5 [12]

Polyp/Keratosis 86.11±5.52 93.61 80 81.8 [12]

Polyp/Nodules 91.25±3.13 95.03 20 87.5 [12]

achieved a detection rate DCFopt = 94.08% (±0.86) using

the m = 25 most relevant features (which corresponds to an

Area Under the Curve (AUC), when using ROC curves, of

AUC = 97.75%; see Table I).

In addition, Table I presents the classification per pathol-

ogy scores in terms of DCFopt and AUC in percent. Specifi-

cally we show the results for classification of polyp against

keratosis leukoplakia, adductor spasmodic dysphonia and

vocal nodules. We also provide the standard deviation for

DCFopt and the optimum number of features as this is se-

lected using the MaxRel criterion. For comparison purposes,

Table I shows the best discrimination rates (DR) obtained

on each task using the same data by Godino-Llorente et

al. [9] and Hosseini et al. [12], respectively. In [9] the authors

use Gaussian mixture models and short-term mel cepstral

parameters for pathological voice quality assessment. In [12]

the voice pathology classification system is based on local

discriminant wavelet packet basis; a Genetic Algorithm is

employed for feature selection and a SVM with a RBF kernel

as classifier.

2516



IV. CONCLUSIONS

We suggested the use of Modulation Spectra for voice

pathology detection and voice pathology classification. Fur-

thermore, we suggested a Maximal Relevance feature se-

lection algorithm based on the mutual information between

subjective voice quality and measured features. Using record-

ings of sustained vowels from MEEI database showed that

the modulation spectral features are useful in assessing vocal

impairment as well as making finer classifications than the

normal versus abnormal classification. An average score of

over 90% for voice pathology classification was achieved

in classifying polyp against keratosis leukoplakia, adductor

spasmodic dysphonia and vocal nodules.
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