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Abstract— High Frequency Chest Compression (HFCC) is
used as a method to remove the mucus in the airway for
Cystic Fibrosis (CF) patients. As the characteristics of the
tracheal sound reflect the conditions of airways, in this paper,
we propose a novel method to evaluate the respiratory patterns
in HFCC therapy by using single channel tracheal sounds only.
The difficulty of analyzing tracheal sounds lies in that it has
a wider frequency band than the air flow at the mouth, and
is always corrupted by other biomedical signals and noises.
During HFCC therapy, the tracheal sound is also affected by the
HFCC machine noise. For this reason, it is difficult to extract
respiratory patterns and other related features by traditional
filtering techniques. In this paper, we demonstrate use of single-
channel independent component analysis to extract respiratory
patterns from the tracheal sounds before, during and after
HFCC therapy, and use basis features in the tracheal sound
to detect the change in respiratory patterns.

I. INTRODUCTION

High Frequency Chest Compression (HFCC) has been one

of the most effective therapeutic methods to assist in clearing

mucus-associated microorganisms from the infected respi-

ratory systems of Cystic Fibrosis (CF) patients or Chronic

Obstructive Pulmonary Disease (COPD) patients. To evaluate

the effect of HFCC therapy, numerous methods have been

proposed such as measuring the amount of induced air flow

at the mouth, the amount of cleared dry or wet sputum,

and the amount of gas exchange rate of N2, O2 and CO2

during the expiration and inspiration [1]–[4]. In addition,

HFCC effects on the heart rate variability, cardio-respiratory

synchronization and sinus arrhythmia during HFCC therapy

have been presented in [5] [6]. As we believe that the

frequency or intensity of tracheal sounds is closely related

to the change of dimensions of airways that result from

the inflammation or accumulated mucus, it is important to

analyze the tracheal sound directly to identify positive or

negative changes associated with HFCC therapy.

The advantages of analyzing tracheal sounds are obvious.

First, respiratory patterns can be extracted from the tracheal

sound. There is no need to measure the air flow at the mouth

to identify the expiration and inspiration periods. Second,

features can be extracted from the tracheal sound that are
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related to the dimensions of airways. Future automatic di-

agnosis based on these features becomes possible. Third,

monitoring changes of pulmonary function by tracheal sound

is realizable. We may only use one stethoscope to track

the long-term change of airways for CF patients. However,

it is not an easy task to analyze tracheal sound directly.

Tracheal sound is nonstationary and often a mixture of other

biomedical signals and environmental noises. Therefore, it

has a much wider frequency band than air flow at the mouth.

By traditional filtering, it is difficult to extract meaningful

frequency band from the tracheal sound. For this reason, we

propose to use single-channel independent component anal-

ysis algorithm [7] to extract independent components (ICs)

from the tracheal sound and identify respiratory patterns from

extracted ICs, and use basis features [8] to detect changes of

respiratory patterns in the tracheal sound.

II. PROPOSED METHOD

Blind source separation [9] is a signal processing tech-

nique that is used to extract unknown source signals from

observed mixtures without any knowledge of the sources and

how they are mixed. In this paper, we assume that the single

channel tracheal sound consists of up to N sources

x(t) = a1s1(t) + a2s2(t) + · · · + aNsN (t). (1)

where x(t) is the recorded tracheal sound, {ai}
N
i=1

are

mixing coefficients and {si(t)}
N
i=1

are N source signals.

The assumption of this problem is that each source signal

is independent of each other1. Based on this assumption, we

can use independent component analysis [10] to solve it. In

Equation (1), we have N sources, but only one mixture. The

problem is ill-defined. A pseudo mixture vector [11] has to

be built such that there are as many mixtures as sources. The

pseudo mixture vector is given by

x(t) = [x(t), x(t − τ), · · · , x(t − (N − 1)τ)]T (2)

where τ is the delay element. Equation (1) can be written as

x(t) = As(t) + n(t) =
N∑

i=1

aisi(t) + n(t). (3)

where A = [a1, · · · , aN ] is an unknown (N × N) mixing

matrix with full rank, s(t) = [s1(t), · · · , sN (t)]T is the

source vector, and n(t) is the additive Gaussian white noise

vector. Column vectors {ai}
N
i=1

are known as basis features.

Standard ICA algorithms such as fast ICA [12], infomax

1For this reason, we use source signal and independent component
interchangeably.
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[13], maximum-likelihood [14] and complexity pursuit [15]

can be applied to estimate the unmixing matrix W = A−1

such that the estimated sources are

ŝ(t) = Wx(t). (4)

In this paper, fast ICA algorithm will be used to extract in-

dependent components (ICs) from the single channel tracheal

sound because it is fast and robust. After being trained, the

mixing matrix A and the unmixing matrix W are pattern-

dependent which means that W can only decompose the

tracheal sound with the same pattern as the training data into

ICs, whereas other tracheal sounds with different patterns

cannot be decomposed into ICs, but only into correlated

components. Based on this property, two test functions J1

and J2 are derived to detect changes in respiratory patterns

by the tracheal sound.

A. Estimate Mixing & Unmixing Matrix

Fast ICA is based on the fourth moment or kurtosis of the

signals, defined as

K(s) =
E[s4]

(E[s2])2
− 3. (5)

where s is a zero-mean random variable. According to the

analysis in [10], a signal extracted from the mixtures that

has the maximum kurtosis is considered as an indepen-

dent component (IC). Thus the problem of Equation (4)

becomes an optimization problem of Equation (5). This is

a sequential method that only one IC is extracted at one

time. Also, pre-whitening by singular value decomposition

(SVD) is required for fast computation purpose. After one

IC is extracted, Gram-Schmidt orthogonalization (GSO) is

performed to eliminate the effect of the extracted IC on the

mixtures. After all ICs are extracted, Cycle-Spinning is used

to reduce blocking artifacts in the ICs [7] [16].

Assume x(t) is zero-mean. Let x = [x(0), · · · , x(T )]
where T is the duration of time, and wT

i is the ith row vector

of W extracting the ith source signal si(t). Note that the

superscript T represents the transpose operation. By SVD,

xT = UΛVT (6)

where U is a (T × N) orthonormal matrix of eigenvectors,

V is an (N ×N) orthonormal matrix of eigenvectors, and Λ

is an (N ×N) diagonal matrix of singular values. We define

zT � U, where z is a set of (N ×T ) whitened mixtures and

z(t) is the tth column of z. After whitening, fast ICA can

be applied on z(t). The table of algorithm 1 summarizes the

fast ICA algorithm.

As proved in [7], the separable condition for single-

channel independent component analysis is that ICs should

be spectrally disjoint. According to our experience, as the

tracheal sound is recorded around the neck, the main source

signals in the mixture are the tracheal sound, the pulse sound,

device noise, electric line noise and environment noise. Other

biomedical signals are weak in the mixture. As tracheal

sound is typically of lower frequency than the others, it can

be separated from the mixture.

Algorithm 1 Training unmixing matrix W

1: for i = 1 to N do

2: Get z(t) by Equation (6).

3: wold=wi

4: △wi
= E[z(t)(wT

i z(t))3]
5: wi ⇐ wi + µ △wi

6: wi ⇐ wi/‖wi‖
7: if |wT

oldwi − 1| > ε then

8: Go back to step 3.

9: end if

10: ŝi(t) = wT
i z(t)

11: x(t) ⇐ x(t) − E[ŝi(t)x(t)]ŝi(t)/E[ŝ2

i (t)]
12: wi ⇐ VΛ

−1wi

13: end for

14: A = W−1

B. Basis Features

Basis features are defined as the column vectors {ai}
N
i=1

and have been successfully applied in speech recognition [8].

Equation (3) shows that {ai}
N
i=1

uniquely relate x(t) and

s(t). After the unmixing matrix W is trained, the mixing

matrix A is also uniquely determined due to a one-to-one

correspondence. This exactly means that {ai}
N
i=1

can be used

as a valid feature set for detecting changes in respiratory

patterns by tracheal sounds. Once the respiratory pattern

in the tracheal sound has been changed, the corresponding

basis features will be changed accordingly. In the rest of the

description, we interchangeably use A and W as the feature

since they are uniquely related to each other.

We propose two test functions J1 and J2 to detect changes

in respiratory patterns. Both test functions utilize the fact that

W can only decompose the tracheal sound with the same

respiratory patterns as the training data into ICs. These test

functions are defined as

J1 = ‖E [̂s(t)ŝT (t)] − I‖p (7)

= ‖WE[x(t)xT (t)]WT − I‖p (8)

J2 =
N∑

i=1

log{
E[(ŝe

i (t) − ŝi(t))
2]

E[(ŝi(t))2]
} (9)

=
N∑

i=1

log{
E[(wT

i xe(t) − wT
i x(t))2]

E[(wT
i x(t))2]

} (10)

where ‖ · ‖p is the entrywise p-norm defined as ‖A‖p �

(
∑N

i=1

∑N
j=1

|aij |
p)1/p, ŝe

i (t) and xe(t) are the predicted

values of ŝi(t) and x(t), respectively. Moving average filter

can be used as a simple linear predictor in Equation (10).

Test function J1 measures the correlation among the

extracted sources {ŝi(t)}
N
i=1

. The value of the test function

is minimized if the feature set {ai}
N
i=1

(or equivalently W)

belongs to the input signal x(t). In this case, the extracted

signals are the ICs. Test function J2 measures the temporal

complexity [15] of the extracted sources. Temporal com-

plexity is a parameter that measures the complexity of the

signal {ŝi(t)}
N
i=1

in the time domain. The assumption of
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using temporal complexity is that if the extracted signals

are real source signals, they should be less complex than

mixtures. In other words, if the feature set {ai}
N
i=1

belongs

to x(t), the value of J2 should be minimized. Test function

J2 is more robust than J1 in that if x(t) is a temporally

whitened signal, J1 will always generate the same value

(minimum for all respiratory patterns) because in this case

E[x(t)xT (t)] = I. Generally, in our research, these two

test functions have almost the same performance to detect

changes in the respiratory patterns. They can be combined

to achieve even better performance.

C. Data Acquisition

We measured the tracheal sounds from a female CF patient

10 minutes before, during, and 10 minutes after HFCC

therapy. The ICS HFCC system (developed by Respiratory

Technologies Inc., St. Paul, MN) induces triangle waveform

at the mouth. This system has 10 pressure settings from

10% to 100% of maximum pressure with a frequency range

of 5-30Hz. In this paper, we selected 5Hz and 100% of

maximum pressure setting with a pressure range of 6-31

mmHg and mean 18.5 mmHg. The duration of HFCC therapy

was about half an hour. The tracheal sounds were recorded

by 3M Littman Electronic Stethoscope 4000 with a sampling

frequency of 8KHz. The duration of each tracheal sound is

8s, which is limited by the device. For simplicity, we use

BHTS, DHTS and AHTS to denote the tracheal sound from

the female CF patient before, during and after HFCC therapy,

respectively.

III. EXPERIMENTAL RESULTS

A. Extract Respiratory Patterns from Tracheal Sound

In this experiment, we assume there are 64 ICs in the

tracheal sound. If redundant basis features show up, this

means that we have assumed too many ICs. We can either

use Principal Component Analysis [10] or k-means algorithm

to reduce or group redundant basis features, and then use

Equation (4) to extract reduced ICs. For purposes of iden-

tifying respiratory patterns and detecting changes, even if

we do nothing on redundant features, it will not affect our

results. Fig. 1 shows three tracheal sounds, BHTS, DHTS

and AHTS. In these three figures, the respiratory patterns

are difficult to estimate. Fig. 2 shows one of the ICs from

each of the tracheal sounds. In the top figure, we can estimate

that before HFCC therapy, the inspiration period is about 2.3s

and the expiration period is about 3s. In the middle figure,

after HFCC therapy, the inspiration period is still about 2.3s,

but the expiratory period is changed to 2.5s. The bottom

figure shows the induced respiratory pattern by HFCC. The

respiratory pattern is modulated by the frequency of 5Hz,

which is the HFCC working frequency, and its envelope

shows the real respiratory pattern. We can estimate that the

inspiration period is about 2.2s and the expiration period is

about 2.8s.

Fig. 3 and Fig. 4 show the 64 basis features of the tracheal

sound BHTS and AHTS. The basis features of BHTS are

almost all low frequency features, while those of AHTS have

some high frequency components. This is because the mucus

in the airway has been cleared by HFCC therapy. The basis

features for these two tracheal sounds are quite different,

which indicates the respiratory patterns have changed after

HFCC therapy. Therefore, test functions J1 and J2 can be

used to detect the changes.
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Fig. 1. Tracheal sounds BHTS, AHTS and DHTS.
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Fig. 2. ICs extracted from the tracheal sounds. Top: The 42nd IC from
BHTS; Middle: The 10th IC from AHTS; Bottom: The 29th IC from DHTS.
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Fig. 3. Complete 64 basis features of BHTS.
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�
Fig. 4. Complete 64 basis features of AHTS.

B. Detect Changes in Respiratory Patterns

In this experiment, due to the limitation of the stethoscope

we use, we construct an artificial tracheal sound shown in

Fig. 5. The first half of the tracheal sound is from BHTS

and the second half from AHTS. The respiratory pattern

is changed in the middle (around 8s). The entire artificial

tracheal sound contains 4 respiratory cycles, two in each half.

The unmixing matrix W is trained by only one respiratory

cycle (about 32000 samples) either from BHTS or from

AHTS. Then the tracheal sound is segmented into frames

of 6400 samples. Each frame is used to generate a value for

two test functions. The results are shown in Fig. 6. In the

left two figures, W is trained by BHTS and in the right two,

W is trained by AHTS. The test functions are minimized

by the respiratory pattern in the training data. We can see

that both test functions detect the changes of respiratory

pattern at the 11th frame which is exactly the place where the

respiratory pattern is changed in the artificial tracheal sound.

This experiment verifies both the validity of basis features

and two proposed test functions.
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Fig. 5. An artificial tracheal sound. The first half is from BHTS and the
second half is from AHTS.

IV. CONCLUSION

This paper proposes a novel method to detect the changes

in respiratory patterns by HFCC therapy based on single-

channel independent component analysis. The tracheal sound

is decomposed into different independent components. Result

shows that it is much easier to identify the respiratory pattern

in the ICs than in the original tracheal sound. The column

vectors of mixing matrix A or basis features can be used

as a valid feature set to detect changes in the respiratory

patterns. Two test functions are proposed to track changes
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Fig. 6. Four detection results. Top left: W is trained by BHTS; Top right:
W is trained by AHTS; Bottom left: W is trained by BHTS; Bottom right:
W is trained by AHTS.

in the respiratory pattern. Experiments show that these two

test functions can successfully detect the place where the

respiratory pattern starts to change in the tracheal sound.
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