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Abstract—High-resolution (HR; multi-electrode) recordings
have led to detailed spatiotemporal descriptions of gastric slow
wave activity. The large amount of data conveyed by the HR
recordings demands an automated way of extracting the key
measures such as activation times. In this study, a derivative-
based method of identifying slow wave events was proposed. The
raw signal was filtered using a second order Butterworth filter
(low-pass; 10 Hz). The signal in each channel was differentiated
and a threshold was taken as the 4.5x of the average of the
negative first derivatives. An active event was defined where
the first derivatives of the signal were more negative than the
threshold. The accuracy of the method was validated against
manually marked times, with a positive predictive value of 0.71.
The detected activation times were interpolated using a second-
order polynomial, the coefficients of which were evaluated using
a previously developed least-square fitting method. The velocity
fields were calculated, showing detailed spatiotemporal profile of
slow wave propagation. The average of slow wave propagation
velocity was 5.86 ± 0.07 mms

−1 .

I. INTRODUCTION

Gastric motility is initiated by an underlying electrical ac-

tivity termed slow wave. It is now understood that slow waves

are generated by the interstitial cells of Cajal in the stomach

wall, and are passively conducted to the gastric smooth muscle

cells [1], [2]. Dysrhythmic slow wave activity is thought to

play an important role in common clinical conditions such as

gastroparesis [3].

The use of high-resolution (HR) recording arrays is a key

research tool in modern electrophysiology. The technique,

when applied to the stomach, involves placing a spatially-

dense array of electrodes directly over the serosal surface

of the stomach, and simultaneously recording the resultant

signals across multiple sites [4], [5]. HR recordings offer

descriptions of both normal and abnormal slow waves at

much greater spatiotemporal detail than the common method

of suturing sparsely distributed electrodes along the greater
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curvature of the stomach. Recently, HR recording has also

been employed to examine events underlying gastric slow

wave dysrhythmias, revealing complex focal activities and

waveform re-entry patterns not apparent in earlier studies

employing fewer electrodes [6].

The main way of identifying slow waves from a HR

recording is through frequency characterization and activation

maps [6]. The frequency can be determined efficiently from a

fast Fourier transform of the signals to locating the dominant

frequency in the frequency domain [7]. Activation maps are

a graphical representation of the times at which the slow

wave passes through each electrode. The time is commonly

determined by the point of the most negative first derivative

in a slow wave event [5]. Because HR recordings may yield

a large amount of data in a short recording period, there is

a need to automate the identification of slow wave activation

times. Automatic identification has been previously attempted,

however, virtually all previously described automated methods

for slow waves were customized for the detection of bipolar

signals from sparsely sutured serosal electrodesm, therefore

are inappropriate for HR mapping techniques [8], [9]. Lam-

mers et al. have proposed an automated algorithm for detection

of slow wave events for unipolar HR recording, however

the low perceived accuracy of this method has prevented it

from being widely adopted to date [10]. New methods for

the automated detection of slow wave activation times are

therefore required.

The velocity of slow wave propagation should not be

measured as a global value for the stomach, as the stomach

exhibits clear difference in regional propagation behaviors as

previously demonstrated in canine studies [11]. Traditionally,

investigators have defined velocity as a vector quantity by

either simply dividing the distance between two electrodes by

the difference in the activation times between the slow waves,

or via a finite-difference based derivative estimation from the

neighboring 4 electrodes [4], [12]. The drawback with the

neighboring electrodes approach, as Bayly et al. have pointed

out, is that the direction of propagation must be accurately

known before local velocity vector can be accurately evaluated

[13]. Any deviations of time differences from the direction

perpendicular to the wave-front may result in an error of

estimating the velocity vector. Furthermore, velocity estimates

from neighboring electrodes are prone to amplifying noise,

particularly in HR mapping as velocity estimations are more

sensitive to noise due to fine inter-electrode spacing.
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In this study, an improved derivative-based method of

automatically identifying slow wave events is presented,

and validated using experimental recordings from a porcine

model. A method of interpolating the activation times using

a previously-developed least-square-fitting algorithms, and ve-

locity field calculations were also adapted for accurately rep-

resenting slow wave characteristics in the porcine recordings.

II. RECORDING METHOD AND SIGNAL

PROCESSING

A. Recording

Ethical approval for porcine experiments was obtained from

the local institutional committee (The University of Auck-

land Animal Ethics Committee). The International Guiding

Principles for Biomedical Research Involving Animals and

Human Beings were followed. Recordings to validate the

presented methods were performed in one female weaner

cross-breed pig of mass 37.3 kg. The methods of anesthesia

and surgery were as previously described [4]. An epoxy-

embedded 48 channel electrode platform (4x12 array; inter-

electrode distance 9 mm; silver electrodes) was positioned on

the anterior porcine gastric corpus as shown in Fig. 1a. A five

minute period of stabilization was allowed prior to a 15 minute

recording period.

Fig. 1. Recording setup. (a) the position of the electrode platform (4x12
electrodes; inter-electrode distance 9 mm). (b) a 60 s segment of recording
from all 48 channels of the electrode platform (filtered via a second-order
Butterworth filter with cut-off of 10 Hz).

All recordings were acquired using the ActiveTwo System

(Biosemi, Amsterdam). The common mode sense (reference)

electrode was placed on the body surface of the lower ab-

domen, 5 cm below the incision. The right-leg drive electrode

(ground) was placed on the right hind leg. The acquisition box

was connected to a Dell M1450 notebook computer via a fiber-

optic cable. The acquisition software was written in Labview

8.2 (National Instruments, Texas). The recording frequency

was set to 512 Hz. The raw signal was filtered using a second-

order Butterworth filter with a low-pass 10 Hz.

B. Post-processing

1) Manual marking: Manual marking was undertaken to

develop a baseline standard to compare with the results of the

automated detection method. Three markers with experience in

recognizing serosal slow wave events marked a 180 s segment

of the recording. Marking was done by importing the data

segment into the SmoothMap software (www.smoothmap.org),

and manually clicking on the electrograms on the graphical

interface, where the marker identified a slow wave event to

have occurred [14]. All markers marked the same segment

of data independently from each other. Three separate lists

of marked times were then compared and the following

root-mean-square (RMS) measure (Equation 1) was used to

calculate the error of each marker.
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where i is the index of the number of markers (n = 3),

and j is index of the same event that all the markers had

marked an event within ± 500 ms. If one or more markers

did not mark the same event, then that event was rejected from

the calculation. The index of the total number of commonly

marked events is denoted by m. The list of commonly marked

events and their averaged times for each event was used as the

baseline for quantifying the efficacy of the automated detection

methods.

2) Derivative-based method: The automated detection al-

gorithm for marking slow wave activation times is summarized

in the following flowchart (Fig. 2),

Fig. 2. Slow wave event detection algorithm. The criteria for a positive
event was that the first-derivative at that point is more negative than 4.5x the
average of the negative first derivatives in that channel. The 4.5x threshold
was determined to be the optimum value for detecting recordings by the E48
platform. Detection of slow waves was conducted in 15 s segments

3) Comparison method: The automatically marked slow

wave events were compared to the reference times using the

following equation,

∆ = min|thk − thw|, (2)

thk =
1

n

m
∑

k=1

thk (3)

where thk is the average of the kth manually marked

events in channel h, and thw is the wth automatically marked
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event also in the same hth channel. The detected events were

compared to all the reference events once, and if the minimum

error was within ± 500 ms then the automatically detected

event was defined as a true positive (TP ) event, out of the

total number of manually detected events (P ). The remaining

detected events by the algorithm were designated false positive

(FP ). The number of reference events that the algorithm had

missed was designated false negative (FN ). In addition, the

positive predictive value (PPV ) was also calculated using the

following equation,

PPV =
TP

TP + FP
(4)

Velocity Calculation: The velocity calculation method was

adapted from the algorithms developed by Bayly et al.[13]. In

order to calculate a uniform spatially-distributed velocity field,

the activation times from each wave were first interpolated

using the following second-order polynomial,

T = p(1)x2 + p(2)y2 + p(3)xy + p(4)x + p(5)y + p(6)
(5)

where T (x, y) is the interpolated activation times at location

x and y in the electrode array. The array of p contains six

coefficients for the second-order polynomial. A previously

developed least-square-fitting algorithm (Equation 6-7) was

used to calculate the polynomial coefficients [13].
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The polynomial coefficient (p) was solved by

p = V S−1UT t (7)

where t is the automatically identified activation times of

slow wave events. Matrix A contains evaluated terms using

the x and y coordinates of the corresponding activation time.

For solution for p was solved by using the singular value

decomposition of A into V , S, and U (A = USV ∗). The

search parameters for the number of events included in one

wave were over the entire set of electrodes (∆ x = 99 mm;

∆ y = 27 mm) within a 10 s interval (∆ t = 10 s). For the

description of normal events, the number of active electrodes

within the 4x12 array was adequately fitted by a second-order

polynomial due to the slow moving wave front of the gastric

slow waves.

Velocity was calculated using the following equation,
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where V (x, y) is the velocity vector evaluated at coordinates

x and y on the electrode array.

III. RESULTS AND DISCUSSION

There was some variation in the accuracy of the manually

marked slow wave events between markers, as shown in Table

I. The maximum RMS error was 111 ms and minimum

RMS error was 82 ms, both of which were in the acceptable

deviation (± 500 ms) as previously defined in the method

section. The markers spent an average of 11.2 min to mark

all the slow wave events in the 180 s segment. Furthermore, all

markers had also identified events that were not also marked

by the other markers, resulting in an inconsistency in the total

number of slow wave events marked by each marker. Based

on the marked events the intrinsic frequency of slow waves

was 2.65 cycles per minute (cpm).

E48(252) M1 M2 M3

Time taken (min) 10 10 14
Events 287 257 255
RMS error (ms) 85 111 82

TABLE I
VARIATION BETWEEN THE MANUALLY MARKED SLOW WAVE EVENTS OF

INDIVIDUAL MARKERS.

Derivative-based method accuracy measure

True positive 230
False positive 94
False negative 22
Positive predictive value 0.71

TABLE II
ACCURACY OF THE DERIVATIVE-BASED IDENTIFICATION METHOD

The derivative-based algorithm demonstrated a reasonable

agreement with the manually marked times (Table II). The al-

gorithm identified 230 true positive events out of the potential

252 positive events identified manually (PPV 0.71). Given

that the algorithm did not require strenuous pre-processing

steps, the PPV of 0.71 was fairly strong. The algorithm

compared favourably with a previously published agorithm [5],

which achieved a PPV of 0.62. Tests conducted across mul-

tiple segments of recordings using the E48 platform showed

a relatively stable performance (PPV 0.71 - 0.97).

The automatically identified slow wave activation times

(Fig. 3a) and interpolated activation times (Fig. 3b) for the

first two waves analyzed showed reasonable agreement. The

interpolated times were calculated over 10 points in each di-

rection, and the spatial regularity of the interpolated activation

times allowed easier construction of activation maps of the

first wave (Fig. 3c) and the second wave (Fig. 3d), both of

which showed a consistent origin and direction of slow wave

propagation.

Equation 7 was used to calculate the velocity for the first

wave (Fig. 3e) and the second wave (Fig. 3f), both of which

clearly demonstrate that there was a localized pattern of high

velocity propagation near the origin of slow wave activity
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recorded by the platform. The average velocity was 5.86 ±
0.07 mms−1. However, it should be noted that there was a

clear spatial distribution of velocity profile in each wave of

slow waves as shown in Fig. 3e and Fig. 3f.

Fig. 3. Slow wave detection, interpolation, activation mapping and velocity
field calculation. (a) automatically detected slow wave events over the first 2
waves; (b) interpolated activation times over the first 2 waves; (c) activation
map (labeled in seconds) of the first wave; (d) activation map (labeled in
seconds) of the second wave; (e) velocity field of the first wave; (f) velocity
field of the second wave.

IV. CONCLUSIONS

A derivative-based method was developed to automatically

identify porcine gastric slow wave activation times. The algo-

rithm had a positive-predictive value of 0.71 relative to a set

of manually identified slow waves. The new method improved

upon previous methods because a threshold for locating slow

wave was automactially assigned to each channel. Given the

variation in slow wave amplitudes across the stomach [6], this

method presents an efficient way of processing HR recording.

A second-order polynomial was fitted over the detected acti-

vation times using a previously developed least square fitting

method [13]. The velocity field was calculated for consecutive

cycles of slow wave events based on the interpolated activation

times to reduce the effects of outliers in marked slow wave

events. The average of slow wave propagation velocity was

5.86 ± 0.07 mms−1.
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