
  

  

Abstract — This work proposes a system for Acoustic Event 

Detection and Classification (AEDC) using enhanced audio 

signal provided by a CMT (Coincidence Microphone 

Technology) microphone. The CMT microphone through signal 

processing algorithm provides an enhanced signal in several 

azimuths with a step of 15°. The AEC module exploits this 

technology to increase classification performance. The 

automatic detection system based on DWT uses an adaptive 

threshold for a different energy level and sampling rate quality. 

The classification system is based on an unsupervised order 

estimation of Gaussian mixture model adapted to the 

variability of sound event acoustic information and the 

representation cost. 

I. INTRODUCTION 

Audio based surveillance systems stem from the field of 

automatic audio classification and matching. Traditional 

tasks in this area are speech/music segmentation and 

classification or audio retrieval. More recently, specific 

algorithms covering the detection of particular classes of 

events for multimedia-based surveillance have been 

developed. 

Acoustic Event Detection and Classification is a recent 

sub-area of computational auditory scene analysis [1] where 

particular attention has been paid to automatic surveillance 

systems [2], [3], [4]. In particular, the use of audio sensors in 

surveillance and monitoring applications has proven to be 

particularly useful for the detection of distress situation 

events, chiefly when the patients suffer from cognitive 

illness. The recent research work in medicine has concluded 

that some patients with mild cognitive impairment will 

develop Alzheimer in the future. The efficient detection and 

recognition of the distress situation is one part of the socially 

assistive robotics technology [5] aimed at providing 

affordable personalized cognitive assistance. 

This work deals with the classification of speech and non-

speech events, where the considered non-speech events are 

typical sounds that may occur in everyday life.  In practice 

some of the sound events may be considered as a noise of 

everyday life which can perturb the recognition task.  

The proposed implementation is based on a hierarchical 

approach that has also been employed in [6]. We propose a 
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specific system able to detect a speech utterance used as 

input for distress expression recognition system or/and 

dialogue system. The use of an acoustic system for tracking 

and recognition remains most useful compared to video 

surveillance, especially in a home environment.  Mainly we 

consider the human solo sounds as a vital signals like 

“Snore, Cough, Cry,…,etc.”.  

We extend the previous work from using an 

omnidirectional microphone-based, firstly, to exploit the 

acoustic diversity observed by a set of CMT microphones-

based placed far from each other and, secondly, to decrease 

the mismatch that can be caused by several factors. The aim 

is to select a useful signal component out of several events 

occurring at the same time. The CMT microphone localizes 

the sound event and can provide an enhanced signal if two 

sound sources are presented at the same time. The main goal 

is to develop a system that is robust to the presence of noise 

that might be generated for example by the hairdryer, 

vacuum cleaner or water flushing.   

This research is being conducted under the European 

Project CompanionAble
1
 an internationally active group 

dedicated to carrying out leading-edge research in computer 

vision and signal processing for man-machine 

communication, including patient home-care, gesture-based 

interaction,  biometry, video surveillance. 

II. CONTEXT AND GOALS 

The proposed audio based surveillance system is 

developed in the framework of CompanionAble project with 

the three goals: patient security, domotic application and 

context awareness. 

In order to assure theses goals the global system is 

designed to use a multiple microphones in each area 

depending on the room dimensions and properties. The 

larger room will be equipped with one or two CMT 

microphones which allow sound localization, however the 

other rooms will contain omnidirectional microphones. Fig.1 

presents the sound processing architecture. 

The analysis system consists of the two modules that 

allow the localization of useful event audio segment. The 

identification of the event given by the audio segment is 

carried out on 24 channels generated by a process provided 

by the CMT microphone. However, the segmentation 

module is carried out only on the omnidirectional signal. In 

the case of simultaneous detections the low level data fusion 

chooses signals based on the signal-to-noise ratio (SNR). 

The detection module associated with the CMT microphone 
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communicates with localization algorith

enhance the signal in the useful direction. 

Fig.1 – Sound Processing Architecture  

III. CMT AND LOCALIZATIO

In order to increase system robustness 

locations of the acoustic source, a CMT mic

is adopted here. At least one microphone pe

order to ensure a good spatial coverage  

The CMT microphone consists of  one pre

and three first order pressure gradient elec

each with a diaphragm, with each pr

transducer having a first sound inlet opening

the front of the diaphragm, and a seco

opening, which leads to the back of the d

sound inlets are on the same side of the disc

gradient transducers.  

The three pressure gradient transducers

plane. Their respective main directions – 

their maximum sensitivity – are lying in the

are inclined relative to each other by 12

acoustical centers of all 4 microphones 

together within a sphere with few millimeter

In the further context we will refer to azi

of the direction of sound incidence only, as

important localization information in 

CompanionAble.  

IV. SOUND DETECTION AND CLASSI

The sound flow provided by the CMT

analyzed trough a hierarchical approach tha

a useful signal detection followed by an even

The first sound analysis module is the

module which is an important step be

classification, especially when the events de

a variable noise of the home environment.  

The signal classification starts with 

identification followed by a classification

identified signal. If the label was spe

recognition engine is used and if a sound 

sound classes recognition system is launch

we are focusing on the sound identification.

A. Sound event segmentation 

The audio segmentation must be able t

event like an impulsive signal. Ideally, t

module must be robust against a low signal

distant acquisition and different acquisitio

ithm in order to 
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hypothesis with the Maximum likelihood is

the identified signal. 

In the next section we compare the resul

the omnidirectional microphone, being pa

microphone, with those results obtained

localized signals. 

 

Fig.3 - Real time analysis of audio files 

CMT microphone by each azimuth in case 

situations, discussion between 2 persons. 

V. EVALUATION 
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Fig.5 - Localization result for 2 persons speaking 

 

2) Sound detection and classification 

The sound event detection is evaluated in terms of number 

of correct detected events. The recorded signal was manually 

labeled in SAM format [9]. We consider a correctly detected 

event if the middle of segmented signal corresponds to a 

reference segment and if its dimension is at minimum about 

50% of the reference one. The Acoustic Event Detection rate 

(AED) is computed: 
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The classification sound/speech and sound classification 

are evaluated in terms of correctly classified signals through 

Acoustic Event Classification (AEC): 
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The global performances of AED system are evaluated 

trough Acoustic Events Detected and Classified Rate 

(AEDC): 
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Firstly the proposed sound analysis system is evaluated on 

the omnidirectional microphone signal, which acquires the 

signal from all directions. These results are compared with 

the results obtained from the 24 directions localization files. 

The analysis is performed on a normal scenario with 

duration of about 2 minutes (see Table I). 

In the Table II we can observe that the classification error 

rate (1-AEC) decrease from 26.7% in the case of 

omnidirectional microphone to 11.8% in the case of the data 

fusion between different azimuth localization. This can be 

explained by the fact that SNR is enhanced for some events 

in some directions (Fig.3). 

VI. CONCLUSION 

In this paper we have presented a first approach of an 

audio based surveillance system for distress situation 

identification, vocal commands and context awareness 

detection which was developed in the framework of 

CompanionAble project. The current proposition uses a 

CMT microphone which allows localizing the sound source 

and to enhance the signal. Our first proposition based on the 

data fusion between different classifications of the same 

sound event indicates good performances and encourages us 

to evaluate them on a larger data base. 
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Table I 

Normal Scenario 1 

Time Duration Action 

00:00 00:20 person is sitting and reading a book 

00:20 00:03 person moves the chair & stands up 

00:23 00:20 person walks around 

00:43 00:03 person sits down again 

00:46 00:15 person is reading a book 

01:01 00:20 another person is entering the room and 

is walking around 

01:21 00:15 the person is sitting down to the desk 

01:36 01:00 the two persons are talking 

02:36 00:15 the first person leaves the room 

Table II 

Detection and classification on Normal Scenario 1 

Signal type AED AEC AEDC 

Omnidirectional 66.7 % 73.3 % 48.9 % 

Fusion on 24 

localization signals 
66.7 % 88.2 % 60.2 % 
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