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Abstract— Movement disturbances play an intrinsic part in
autism. Upper limb movements like reach-and-throw seem
to be helpful in early identification of children affected by
autism. Nevertheless few works investigate the application of
classifying methods to upper limb movements. In this study we
used a machine learning approach Support Vector Machine
(SVM) for identifying peculiar features in reach-and-throw
movements. 10 pre-scholar age children with autism and 10
control subjects performing the same exercises were analyzed.
The SVM algorithm proved to be able to separate the two
groups: accuracy of 100% was achieved with a soft margin
algorithm, and accuracy of 92.5% with a more conservative one.
These results were obtained with a radial basis function kernel,
suggesting that a non-linear analysis is possibly required.

I. INTRODUCTION

Autism is a complex developmental disability which pri-
marily affects a person’s ability in social interaction and
communication. Autism is known as a spectrum disorder,
because it affects each individual in different ways and
degrees. According to the Center for Disease Control and
Prevention (2007) [1], autism is estimated to occur in one
out of 150 children in the USA.
Diagnostic criteria for autism are primarily based on impair-
ments in social functioning and communication skills (DSM-
IV TR & ICD-10). However, there is a growing research
interest for motor impairment in autism, and, it’s even been
suggested that most of the social symptoms may actually
originate from deficits in motor functioning [2].
In our study, we analyze upper limb kinematics during a
reach-and-throw task in a group of children with autism at
nursery age, compared to a group of normally developing
children of the same age.
Support Vector Machines (SVMs) are learning networks used
for two-group classification problems. SVMs calculate the
weights of the network by solving a quadratic programming
problem with linear constraints, rather than by solving a
not-convex, unconstrained minimization problem as in stan-
dard neural network training. SVMs are suitable for data
a priori not linearly independent. They are normally used
in bimolecular analysis but also in EEG and ECG [3] and
motion analysis. Many works on the application of SVMs in
motion analysis are based on kinematic gait data [4], [5], [6]
and only a few deal with upper limb data [7].
With this research, we aim to use SVM to identify some
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autism-specific motor signs which, being acquired before the
development of language, and being evaluated quantitatively,
may represent a praecox, and indeed an objective indicator of
risk in autism, supporting clinicians towards earlier diagnoses
in life, with substantial effects on the therapy outcomes.

II. METHODS

The reach-and-throw movement was chosen because it is a
milestone in the growth of a child and its incomplete or faulty
acquisition could prevent the development of successive
superior neuro-motor functions. It can be studied in infants,
as it requires the application of any internal motor models
(already acquired at 6 months) and just a few strategic pro-
gramming (present at 3 years). In the end it is simple enough
to be executed by infants, and it is useful to stress some early
cognitive abilities in order to differentiate between normal
children and risky ones. Many studies show that children
affected by autism do not control this movement completely
even at scholar age, being slower and less accurate compared
to same age normal children [8], [9].

A. Experimental design

Each child sat in front of a shaped table, whose height
was adjusted to align to the base of the child’s trunk. The
experimental task consisted of grasping a rubber ball (6.0
cm diameter) placed over a support, and throwing it in a
see-through squared basket (21 cm high), with a hole large
enough (7.0 cm diameter) to require not so fine movements,
see “Fig. 1”. Ten throwing trials were conducted for each
participant, 5 with the right hand and 5 with the left one.

B. Subjects

Two groups of children were studied. The first group
included 10 normal subjects (mean age of 41.60 months ±
9.23, mean IQ 119.02 ± 16.07). The second group included
10 subjects affected by autism (mean age of 41.44 months
± 7.13, mean IQ 72.86 ± 14.10).

C. Instrumentation

Kinematic variables were recorded by means of an op-
toelectronic system, with 8 infrared cameras working at 60
Hz (SMART-BTS r). Passive markers were used to reflect
the infrared concentric beam of light emitted from around
each camera. The markers were positioned on the child
(shoulder, elbow, medial and lateral position of the wrist, 4-
5 metacarpus for every child), on the basket under the goal
area and on the ball, see “Fig. 1”
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Fig. 1. Experimental setting. The ball is initially positioned on the support
(A). The child has to reach the ball, grasp it and do a second reach to
throw the ball in the goal area (B) and through the hole (C). The goal area
is transparent to allow seeing through. 4 markers (black points) are placed
on the basket under the goal area, 2 on the ball and 3 on each hand.

D. Movement analysis

The complete movement from the starting position till the
ball release, was split in parts. Criteria for identifying single
parts are presented in Table I. Anomalous movements were
excluded from the analysis in order to avoid classification
errors. An 8-Hz Butterworth low-pass filter was applied
to the data [10] and segmentation was then automatically
performed with specifically developed software written in
Matlab (Matworks r).
Specific spatio temporal parameters were identified in order
to analyze each segment (Table II) according to previous
studies on upper limb movements analysis in children [8],
[9].

TABLE I
MOVEMENT SEGMENTATION

Segment Starting Ending

Reaching 1:
“Reaching
the ball”

T0 - a non-stop
movement of the
hand towards the
ball starts and child
wrist reaches a speed
greater than 10
mm/sec [11]

T1 - the speed slows
under 10 mm/sec,
after the hand has
touched the ball

Reaching 2:
“Reaching
the basket”

T2 - a non-stop
movement towards
the goal area starts.
Only movements
starting within 20 cm
from the support are
considered valid

T3 - the wrist speed
slows under 10
mm/sec, after the
hand has entered the
goal area

Adjustment
movements
(if present a)

T3 T4 - the child releases
the ball

a When the child programs a complete Reaching 2 movement since
its starting, no adjustment movement is observed and the ball is
released at the end of Reaching 2 (T3=T4)

TABLE II
SPATIO-TEMPORAL PARAMETERS DEFINED

FOR EACH SEGMENT

Reaching 1 Reaching 2 Adjustment
movements

Total Duration
[TD1, msec]

Total Duration
[TD2, msec]

Total Duration
[TDf, msec]

Number of
Movement Units a

[MU1,#]

Number of
Movement Units
[MU2,#]

Number of
Movement Units
[MUf,#]

Peak Velocity
[PV1, cm/sec]

Peak Velocity
[PV2, cm/sec]

Time of Peak
Velocity
[TPV1, sec]

Time of Peak
Velocity
[TPV2, sec]

Straightnessb

[str, ratio]
Wrist angle be-
tween the verti-
cal axis and the
hand of the sub-
ject at time T3
[WA,degrees]

a A Movement Unit is determined by an acceleration phase
followed by a deceleration one, where the speed module both
in acceleration and in deceleration is greater than 10 mm/sec
and the module of either acceleration or deceleration is greater
then 20 mm/sec2 [11].

b Straightness is calculated as the ratio between Cumulative
Distance and minimal distance, where minimal distance is
computed by a linear regression between the detected posi-
tions of the wrist at time T0 and T1 [12].

E. SVM Classifier

The support-vector network is a learning machine for
two-group classification problems. Input vectors are non-
linearly mapped to a n-dimension feature space where a
linear decision surface is constructed [13], [14].
Lateral mean values, in a normalized z-score form (z =
xi−µ
σ ), were used to facilitate the training of SVMs [13].

SVM formulation is presented in Appendix. SVMs require
the selection of a proper kernel function. Till now neither
empirical nor analytical studies proves the superiority of any
kernel function. In this study we experimented the use of 3
different kernel functions:

• linear: K(xi, xj) = xi · xj
• polynomial: K(xi, xj) = (xi · xj + 1)d

• radial basis: K(xi, xj) = exp(−σ|xi − xj |2)

The regularization parameter C, that settles the trade-off
between the maximum margin and the minimum classifica-
tion error [4], was used to tune the machine. Different values
of C (from 0.01 to 100) were tested for each kernel solution.
LibSVM package of the R project was used for the classifi-
cation [15].

III. EXPERIMENTAL RESULTS

A. Statistical Analysis

We analyzed the movement parameters with a 1-way
anova F(1,38) to test the equality between the two groups
(null hypothesis H0). WA, TDf and MUf showed the most
significant differences (Table III).
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B. SVM Classification

Area Under ROC Curve (AUC) values were computed for
each movement feature in the case of linear kernel and C=1
(Table IV), in order to obtain the power of every feature in
the basic classification condition. Accuracy1 was estimated
for each considered kernel function in different conditions,
as mentioned above. A 10 k-fold cross-validation method
was used, where all these data are considered for both
training and testing in a recursive procedure [16]. The
maximum accuracies observed are reported in Table V.
The best classification (accuracy 95%) was obtained with
the radial basis kernel (σ = 0.05) and the highest C value
(C=100), suggesting that the separation margin between the
two groups was small.
The Hill-Climbing feature selection [17] was then performed
in two cases: firstly in case of maximum accuracy with this
sample of data (rbf kernel, σ=0.05, C=100) and secondly
in case of major robustness of the classification in view
of new test data (rbf kernel, σ=0.5, C=1). Features were
added considering the reverse order of their corresponding
AUC values (Table IV). Results are shown in “Fig. 2”. In
both cases the accuracy increased when including MU1,
decreased and then increased again with MU2.

TABLE III
1-WAY ANOVA F VALUES FOR EACH FEATURE. F(1,38)
TD1 MU1 PV1 TPV1

9.21 ** 12.45 ** 7.01 * 9.17 **
str TD2 MU2 PV2

8.26 ** 10.52 ** 7.93 ** 6.88 *
TPV2 WA TDf MUf

6.88 * 18.21 *** 27.53 *** 54.71 ***

*** p<0.001 ** p<0.01 * p<0.05

TABLE IV
AUC VALUES FOR EACH MOVEMENT PARAMETER

(LINEAR KERNEL, C=1).

MUf TDf WA MU1 str TD1
0.98 0.98 0.87 0.85 0.78 0.77

TPV1 TD2 PV1 MU2 PV2 TPV2
0.77 0.76 0.75 0.73 0.71 0.66

TABLE V
MAXIMUM ACCURACY VALUES FOR DIFFERENT KERNEL FUNCTIONS

AND PARAMETERS.

Kernel C Accuracy
Linear 10 90

Polynomial (d=2) 10 65
Polynomial (d=3) 10 87.5

Rbf (σ=0.5) 1 85
Rbf (σ=0.05) 100 95

1Accuracy is defined as Acc = TPR+TNR
TPR+FPR+FNR+TNR

where
TPR=True Positive Rate, TNR=True Negative Rate, FPR=False Positive
Rate, FNR=False Negative Rate

Fig. 2. Hill-Climbing feature selection in the case of maximum accuracy
(rbf kernel, σ=0.05, C=100, line with triangle point-up) and in an higher
robustness case (rbf kernel, σ=0.5, C=1, line with triangle point-down). In
both cases an increase of accuracy can be observed when including MU1
feature as well as when including MU2 feature.

These results suggest that Movement Units (MU1 and
MU2) have to be considered as discriminating features in
addition to TDf, MUf and WA, because they explain the
remaining variance.
Accuracy of 100% was achieved adding these features to
the classification with the soft margin separation (line with
triangle point-up, “Fig. 2”).

IV. DISCUSSION AND FUTURE WORKS
A. Conclusions

The reach-and-throw movement was segmented and de-
scribed by means of a set of 12 features.
Classical statistical analysis was able to identify a first group
of these features that were useful in differentiating between
the autistic children group and the control group. They were
related to the final part of the movement.
SVM classification proved its better performance with a ra-
dial basis function kernel (non-linear separation) and demon-
strated that also the movement units MU1 and MU2 are
important features to be considered.
The best accuracy (100%) was obtained with a soft margin
classification, where high accuracy is achieved by means of
a narrow separation margin. Very good accuracy (92.5%)
was obtained even in a more conservative case with a harder
margin classification, assuring the power of the classification
system in view of new collecting data.
According to these results, signs of autism impairment can
be really extracted from the reach-and-throw movement
confirming the hypothesis that movement classification can
be helpful in supporting early diagnosis, showing high values
both for sensitivity and specificity.

2557



B. Future Works

Many methods are available besides the Hill-Climbing
feature selection used in this work. For example a data
mining or a feature extraction via PCA [5], Wavelet [18] or
rough set theory [6] could be performed. Their use could lead
to a good classification with a reduced number of features
and they should be tested.
Moreover a larger sample of data has to be collected, to allow
using part of them for training the classification system and
the rest for validating it.

APPENDIX
SVM FORMULATION

Considering a training set D = {(xi, yi)}li=1, with xiε<n
as input and yiε{−1,+1} as output, each input x is firstly
mapped into another feature space Υ by g= φ(x) with a
linear or a nonlinear mapping φ : <n → Υ. Υ feature space
can both be higher or equal to n upon on which mapping
function is used. A linear separation in a higher feature space
(Υ) could be viewed as a non-linear separation in the starting
space (<n). Considering the case where data are linearly
separable in Υ, there exists a vector wεΥ and a scalar b that
define the optimal separating hyperplane (OSM) as w·g+b =
0 such that

yi = (w · gi + b) ≥ 1,∀i (1)

Maximize the margin of separation between the two
classes (2/‖w‖) is minimize w·w/2 under the constrain of
Eq.(1).
For non linearly separable data the above minimization
problem is modified in the constrain formula as follows

yi = (w · gi + b) ≥ 1− ξi,∀i (2)

where ξi are errors of classification. So ξi can be regarded
as a measure of misclassification. The position of the hyper-
plane is determined by the weights, wi and bias, b which are
obtained by solving the following SVM quadratic program-
ming problem formulated as a Lagrangian dual problem:

maximize W (α) =
L∑
i=1

αi −
1
2

L∑
i=1

L∑
j=1

αiαjyiyjgi · gj

subject to
L∑
i=1

yiαi = 0, and 0 ≤ αi ≤ C, ∀i

(3)

where α = (αi, . . . , αL) is the non-negative Lagrangian
multiplier. The data points xi corresponding αi > 0 lie along
the margin of the hyperplane and are named as Support
Vectors (SVs). Kernel function K(.,.) can be used in Eq. 3
as gi·gj obtaining gi·gj = φ(xi) · φ(xj) = K(xi,xj).
Determined the optimum Lagrange multipliers, the optimal
solution for weight vector w is

x =
∑
i∈SV s

αiyigi (4)

having for any test vector x ∈ Ren the output given by

y = f(x) = sign(w · g + b)

= sign(
∑
i∈SV s

αiyik(xi, x) + b) (5)
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