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Abstract— Formant frequencies of snore and breath sounds
represent resonance in the upper airways; hence, they change
with respect to the upper airway anatomy. Therefore, for-
mant frequencies and their variations can be examined to
distinguish between snore and breath sounds. In this paper,
formant frequencies of snore and breath sounds are investigated
and automatically grouped into 7 clusters based on K-Means
clustering. First, formants clusters of breath and snore sounds
of all subjects were investigated together and their union
were calculated as the most probable ranges of the formants.
The ranges for the first four formants which span the main
frequency components of breath and snore sounds were found
to be [20−400]Hz, [270−840]Hz, [500−1380]Hz and [910−
1920]Hz. These ranges were then used as priori information to
recalculate the formants of snore and breath sounds separately.
Statistical t–test showed the 1st and 3rd formants to be the most
characteristic features in distinguishing the breath and snore
sounds from each other.

I. INTRODUCTION

Snoring is a common symptom and about 50% of the

adults suffer from snoring [1, 2]. Snoring degrades the sleep

quality of the snorer, the bed partner and other members

of the household; hence, leads to somnolence, daytime

sleepiness [3], impaired performance at work, higher risk of

accidents [4], and diseases such as ischaemic brain infraction,

systemic arterial hypertension, coronary artery disease and

sleep disturbance [5, 6]. Snore sounds are also found as one

of the earliest symptoms of obstructive sleep apnea (OSA).

Snore and breath sounds can be recorded with a mi-

crophone which is attached to the patient’s neck or fore-

head or is hung near patient’s head. Given the size of

data recorded during sleep, the first step in any diagnosis

based on acoustical analysis is to classify snore and breath

sound automatically. In previous studies, Hidden Markov

model (HMM) [7], energy of the recorded signal [8], and

combination of zero crossings and signal’s energy [9] have

been used for classification of breath and snore sounds. The

accuracies of these methods have been reported between 82%
to 97% [7-9]. However, one should note that in all the above

mentioned studies, the microphone was hung in the air above

the patient’s head, which means the recorded signal mostly

included snore and ambient sounds.
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Snoring sounds are generated in the upper airways either

directly by the vibration of different structures such as soft

palate, epiglottis, or the collapsible walls of the airways

or by the turbulence of airflow near the narrowing of

the airways [10-13]. Spectrum of snore sound signals has

two characteristic components of pitch and formant. Pitch

is the fundamental frequency of snore sounds’ vibrations

while formant frequencies represent resonance frequencies

of the airways. Hence, the formant frequencies change with

respect to the upper airways anatomy. On the other hand,

respiratory breathing sounds convey important information

on the pathology and physiology of the airways [14, 15]

and their investigation during sleep may reveal useful infor-

mation about changes in the breathing pattern of the patient.

Therefore, in this study we have recorded tracheal respiratory

sounds to have both snore and breath sounds.

One of the most frequently used methods for estimation

of formant frequencies is based on linear predictive coding

(LPC) [16-19]. In this method, the spectrum of the signal

is approximated and the peaks represent the formant fre-

quencies. Thus, having some preliminary information about

the frequency ranges of each formant is very helpful. This

information not only simplifies the search for formant fre-

quencies, but more importantly, for the cases that one of

the formants is not detectable, it helps to make sure the

missed formant is not be misplaced with higher or lower

formants. In [20], the formant frequencies of snore sounds

were investigated manually and five frequency ranges of [0−
300]Hz, [300− 700]Hz, [700− 1400]Hz, [1400− 1900]Hz

and [1900 − 2500]Hz were selected as the corresponding

ranges of the first 5 formants, respectively.

In this study the formant frequencies of breath and snore

sounds were investigated in detail and the optimum fre-

quency range of each formant was found automatically using

K–means clustering. Then, the formant frequencies of breath

and snore sounds were calculated based on the predefined

ranges of each formant. These formants were investigated to

find the most significant formants for differentiating breath

sounds from snore sounds.

II. METHOD

A. Data

Tracheal respiratory and snore sounds were recorded from

15 (3 females) patients at Health Sciences Center Sleep Dis-

orders Clinic (Winnipeg, Canada) simultaneously with their

full polysomnography (PSG) study. Subjects were recruited

randomly and no limitations in terms of age, gender, BMI or

AHI were applied. The sounds were recorded with a Sony

(ECM-77B) microphone placed over the neck of the patient
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TABLE I

PATIENTS’ DEMOGRAPHIC INFORMATION.

Parameter Age (µ ± σ) BMI (µ ± σ) AHI (µ ± σ)

Average 52.3 ± 15.2 35.1 ± 4.6 33.9 ± 42.3

Range [25 − 87] [30.1 − 48] [0.9 − 126]

on the suprasternal notch. Sound signals were amplified and

lowpass filtered with the cutoff frequency of 5 kHz using

Biopac (DA100C) amplifiers. The amplified signals were

digitized by National Instruments data acquisition module

(NI9217) with a sampling rate of 10240 Hz. A LabView

based software was developed to record and save digitized

signals on a laptop machine. To synchronize our recording

device with PSG system, the clock of laptop and the PSG

were synchronized and the start time on our recording system

was automatically saved in a text file; this information was

later used to retrieve the exact time of different events and

associate them with the PSG based information. The patients

demographic detailed information is shown in Table I.

B. Signal Analysis

The recorded sounds were first highpass filtered with a

Butterworth filter of order 5 and cutoff frequency of 20Hz to

remove low frequency noises including motion artifacts. The

snore and breath sounds segments were extracted manually

by listening to the sounds and investigating them in time–

frequency domain. From the segments including snore, the

periods for which the snore sounds dominated breath sounds

were selected and marked as pure snore segments. For every

available sleep position, including left, right, supine (lying,

face up) and prone (lying face down), at least 5 min of

data was investigated with the same procedure. In total,

1636 snore segments and 3059 breath segments at different

sleeping positions were selected from all subjects.

1) Formants range calculation: For every sound segment,

linear predictive coding (LPC) was used to find the formant

frequencies [19]. Since the duration of the segments can

be as long as 2 seconds, the sounds are not stationary in

the whole segment. Therefore, in every segment, the sound

signals were windowed with a Hamming window of 20ms

with 50% overlap. In each window, the signal was estimated

by an autoregressive (AR) model. In [18], it was shown that

the optimum order of the AR model for formant estimation

has a strong correlation with the sound sampling rate and

for sampling rates of Fs ∈ [6 − 18]kHz, the optimum

order would be M = Fs(kHz) + γ where γ = 4, 5. In

this study, sound signals were recorded with a sampling

rate of 10kHz. Therefore, an AR model of order 14 was

used to estimate the formants frequencies. The roots of the

AR model were calculated and angles of the complex roots

with positive real values were estimated, which represent the

formant frequencies. Therefore, for each window, up to 7
formants in the frequency range of [20 − 5000] Hz were

found.

The formants of all subjects were aggregated, and K–

means clustering was used to find the partitions, and group

the formants frequencies of snore and breath sounds seg-

ments. K–means clustering is one of the most commonly

used methods for unsupervised partitioning of data into K

clusters [21-23]. In this method, K initial partitions are

selected, then the partitions boundaries and centroids are

updated iteratively:

• Step 1: Finding average of data in each partition and

set it as the centroid of the cluster.

• Step 2: Generating the new partitions by assigning

each data point to the cluster for which the Eucledian

distance to the cluster centroid is minimum.

• Step 3: Finding the error as:

Err =

K∑

j=1

E [x(j) − mj ]
2

E [x(j)]
2

, (1)

where E[.] is the average function, x(j) represents data

points in cluster j and mj is centroid of cluster j. The

mean square error (E [x(j) − mj ]
2
) in each cluster is

dependent to the energy of the formants in the cluster.

Therefore, it is normalized by the energy of the formants

in the cluster; hence, the error values in the clusters with

larger formant frequencies do not dominate the overall

error.

• Step 4: If the difference between error values of current

iteration and previous iteration is more than 10−5, the

method would be continued from step 1.

Since the maximum number of formant frequencies in

each window was 7, the number of clusters in K–means

algorithm was set to K = 7. On the other hand, K–means

clustering is sensitive to the selection of initial partitions and

it may end to a local minimum. Therefore, it was repeated

with 20 different initial partitions and the partition with the

minimum normalized mean square error (Eq. 1) was selected.

After finding the formant frequency ranges of snore and

breath sounds segments, the results were used to find the op-

timum frequency ranges for the sound segments (RngSnBr).

For each formant, the new frequency range was specified as

the union of the corresponding formant of snore and breath

sounds to cover the formants of both sounds.

2) Formant estimation: To investigate the changes in the

formant frequencies of snore and breath sounds, the results

of RngSnBr were used to calculate the formant frequencies

again. For every sound segment, the formant frequencies

were calculated in windows of 20ms (as mentioned in

section II-B.1). Then in every window and for each frequency

range of RngSnBr, the formant frequency that lied in the

range, was assigned as the corresponding formant frequency.

If there were more than one frequency component in the

range, the smaller one was determined as the formant fre-

quency. After finding the formants of all windows of the

sound segment, for every formant (F1−F7), the median of

the formant values in different windows of the sound segment

were determined as the formant frequencies of that segment.

For every subject, the formant frequencies of the breath

and snore segments were averaged in all segments, and the

standard t–test was performed to find the most significant
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Fig. 1. Schematic of the proposed method.
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Fig. 2. Results of K–means clustering in finding the formants’ frequency
ranges of breath and snore sounds. Black dots show the average of the
formants in each frequency range.

formants for distinguishing breath and snore sounds from

each other. Figure 1 shows the schematic of the proposed

method.

III. RESULTS AND DISCUSSION

First, snore and breath segments were clustered separately

by K–means clustering to investigate the differences between

the sounds, and the results are shown in Fig. 2. As can be

seen, the right bounds (FH ) of the first four formant clusters

of the breath segments are higher than those of the snore

segments.

Formant frequencies represent the effects of resonance

in generation of sound signals. The results of investigating

the acoustical properties of snore sounds have shown that

the main peaks in their spectrum are below 1000Hz [24,

25, 13, 10]. On the other hand, the peaks in the power

spectrum of normal tracheal sounds are found to be in higher

frequency ranges of up to 1800Hz [14]. These studies justify

our findings that formants of breath sounds have higher

frequencies than those of snore sounds.

K-means clustering is a fast and automatic method to

group data into clusters, and find the partitions of the clusters

blind to any priori information. Therefore, in order to validate

the results of K–means clustering, the frequency ranges were

also estimated manually and independently from the K–

Means clustering results. It was found that the ranges of

K–Means clustering included the manually detected ranges

(they were slightly wider).

The optimum frequency ranges of breath and snore sounds

segments were calculated as the union of the ranges which

were found for each sound separately (RngSnBr). Figure 3

and Table II show the results in detail. Using this method,

the acquired ranges include the ranges of different formants
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Fig. 3. Results of formants’ frequency ranges after combining the
information from breath and snore sounds of all subjects.

TABLE II

RESULTS OF FORMANTS’ FREQUENCY RANGES OF SNORE AND BREATH

SOUNDS OF ALL SUBJECTS BASED ON K–MEANS CLUSTERING AFTER

COMBINING THE RANGES. FL AND FH ARE THE LOWER AND UPPER

LIMITS OF EACH FREQUENCY RANGE, RESPECTIVELY.

Formant F1 F2 F3 F4 F5 F6 F7

FL(Hz) 20 270 500 910 1680 2580 3590

FH(Hz) 400 840 1380 1920 2680 3770 5000

of both sounds and cover the variations due to the differences

in generation of snore and breath sounds.

Sola–Soler et. al. [20] calculated the formant frequencies

of snore sounds of 16 subjects, and manually inspected the

ranges of [0 − 300]Hz, [300 − 700]Hz, [700 − 1400]Hz,

[1400 − 1900]Hz and [1900 − 2500]Hz as the frequency

ranges of the snore formants. Investigating the results shown

in Table II, it is evident that the ranges of RngSnBr include

the ranges given in [20] for snore sounds. In addition, the

proposed method in this study is fully automatic; thus, it is

not biased to the observer’s skill and it can be applied to

the data of a large group of subjects to have more reliable

ranges.

Our goal in this study was to find the optimum frequency

ranges of snore and breath sounds for distinguishing the two

sounds from each other automatically. Hence, the results

of RngSnBr of the first stage were used to recalculate

the formants of snore and breath sounds as mentioned in

section II-B.2. Then, the formants were averaged among

the subjects. Figure 4 displays the average and standard

deviation of the first four formants frequencies of the snore

and breath segments. The main frequency components of

breath and snore sounds are in the frequency range of below

1500Hz [25, 14]. Hence, hereafter only the first 4 formants

are investigated which span this frequency range. The results

show that F1 and F2 frequencies of the breath sounds are

greater than those of the snore sounds, while for F3 the

relationship is reversed.

The student t–test analysis was performed on the formant

frequencies of breath and snore sound segments and the

corresponding p–values are shown in Table III. Based on the

results, it is evident that F1 and F3 are significantly different

between the breath and snore segments. Therefore, F1 and

F3 formants can be considered as promising features for

classifying snore sounds from breath sounds automatically.

Furthermore, this method may be investigated further for
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Fig. 4. Average and standard deviation of formant frequencies of snore
and breath segments in 3 groups of SS, SAD and ALL.

TABLE III

RESULTS OF P–VALUES OF T–TEST BETWEEN THE FORMANTS OF SNORE

AND BREATH SOUNDS IN DIFFERENT GROUPS OF SUBJECT. ∗

REPRESENTS THE SIGNIFICANT VALUES.

Formants F1 F2 F3 F4

p–value 0.0003∗ 0.1793 0.0244∗ 0.7009

classifying simples snorers from OSA patients.
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