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Abstract— The problem of detecting clinical events related
to cardiac arrhythmias in long term electrocardiograms is a
difficult one due to the large amount of irrelevant information
that hides such events.

This problem has been addressed in the literature by means
of clustering or classification algorithms that create data parti-
tions according to a cost function based on heartbeat features
dissimilarity measures.

However, studies about the type or number of heartbeat
features is lacking. Usually, the feature sets used are relevant
but redundant, which degrades algorithm performance.

This paper describes a method for automatic selection of
heartbeat features. This method is assessed using real signals
from the MIT database and common features used in previous
works.

I. INTRODUCTION

With regard to cardiac arrhythmias, heart condition is

assessed in terms of rate, regularity, impulse origin or con-

duction, and waveforms [16], commonly measured by means

of an electrocardiogram (ECG).

However, since an ECG is a nonstationary signal, the

significant clinical events may be randomly scattered in

time throughout the entire signal. Additionally, these events

might be very infrequent. Consequently, to assure no missing

arrhythmia information, ECGs are recorded for hours or even

days. Long term ECGs involve a vast amount of data, most

of it not clinically significant, which complicates its analysis

both in terms of computational time and event detection

capabilities.

Holter records are the usual ECG type to seek possible

arrhythmias [13]. Specific signal features correlated with

arrhythmias are analized. These features can be, in general,

waveform morphology, amplitude, or time or frequency

related (RR interval, heart rate) [4], [14], [15]. Sometimes the

features are corrupted by signal artifacts [18] and by the in-

trinsic variability of heartbeats [8]. Therefore, it is absolutely

necessary to develop efficient and accurate algorithms able

to deal in a short time with the data, while not omitting

relevant clinical details. Thus, new computer tools could be

developed as diagnosis aid systems [3].

These algorithms or methods will have to include a

feature selection stage. Then, heartbeats are classified using
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a supervised or an unsupervised approach. A number of

methods have been reported in the scientific literature to

carry out this classification. For instance, [6], [3] and [11]

using a supervised approach, or [9], [4] and [12] using

an unsupervised one. However, little attention has been

paid to the feature selection stage, specially regarding the

significance of the features used. Such study could improve

the performance of the methods by focusing on the most

relevant information in data.

This work describes a scheme for unsupervised ECG

feature selection based on a two stage recurrent algorithm.

It algebraically selects the most relevant features, computed

over the heartbeats affinity matrix [17]. The experimental set

used was drawn from the MIT-BIH database [10], including

normal (N) heartbeats, as well as the arrhythmia types recom-

mended by the AAMI [1], usually found in Holter records:

ventricular extrasystoles (VE), left and right branch bundles

(LBBB and RBBB) and atrial premature beats (APB). A set

of features are ranked by means of a non-supervised scheme

based on the gaussian maximization clustering algorithm

(GEM) [2]. Cluster initialization is carried out using a J-

means [7] algorithm. The results were assessed in terms of

sensitivity and specificity measures, based on the heartbeat

labels.

II. MATERIALS AND METHODS

A. Feature Set

As the initial feature set, we chose features taken from

previous works that achieved good performance in wave

morphology characterization, signal variability, and signal

representation. They have been employed in applications to

detect N, VE [4], LBBB [5], RBBB [9] and APB [13]. Table

I shows, in detail, the feature set, including its description

and computation, if applicable.

B. Feature Relevance Measurement

To assess the relevance of each feature, we used the

algorithm described in [17]. In proceeds as follows:

Definition 1: (Relevant Features Optimization) Let M

be an input matrix of size n × q, where n accounts for

the features and q for the observations. The matrix rows

are m⊤
1 , . . . ,m⊤

n . Let Aα = ∑n
i=1 αimim

⊤
j , for some unknown

scalars α1, . . . ,αn. The weight vector α = (α1, . . . ,αn)
⊤ and

the matrix Q of size q× k, are determined at the maximal
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TABLE I

FEATURE SET USED IN ARRHYTHMIA ANALYSIS WHOSE RELEVANCE HAS BEEN STUDIED.

Index Type Feature description

1 HRV [13] • RR interval (r1)
2 • pre-RR interval (r0)
3 • post-RR interval (r2)

4 Prematurity [13] • RR and pre-RR intervals difference, f4 = r1 − r0

5 • Post-RR and RR intervals difference, f5 = r2 − r1

6 • continuous A beats

◦ f6 =

(

r2

r1

)2

+

(

r0

r1

)2

−
(

f4 +β · 1

3

2

∑
i=0

r2
i · log(ri)

2

)

, 0 < β < 0.1

7 Morphology [13], [4] • Dynamic time warping (DTW) between P wave actual and P wave template
8 • QRS complex polarity

◦ Let b be the samples of a heartbeat, then, f8 = Pi =

∣

∣

∣

∣

max(bi)

min(bi)

∣

∣

∣

∣

9 • QRS complex energy

◦ f9 = Eb j
=

n

∑
i=1

b j(i)
2

10, . . . ,19 Representation [9] • 10 Hermite coefficients

◦ fi
i=10:19

= φσ
n

n=0:9

=
e−t2/2σ2

√

2nn!
√

π
Hn(t/σ), where Hn is Hermite polynomial

y σ window width.
20, . . . ,90 Rrepresentation [5] • Wavelet Db2 (A4: 20−25, D4: 26−31, D3: 32−41, D2: 43−58, D1: 59−90)

◦ Using Discrete Wavelet Transform (DWT)

point of the optimization problem:

max
Q,αi

trace(Q⊤A⊤
α Aα Q)

subject to
n

∑
i=1

α2
i = 1, Q⊤Q = I

(1)

An optimal solution has to be found for 1. If the weight

vector α is known, then the solution for the matrix Q is

found by using Singular Value Decomposition (SVD) of the

symmetric and positive definite matrix Aα . Otherwise, if Q

is known, then α is easily determined since:

trace(Q⊤A⊤
α Aα Q) = ∑

i, j

αiα j(m
⊤
i m j)m

⊤
i QQ⊤m j

= α⊤Gα
(2)

where Gi j = (m⊤
i m j)m

⊤
i QQ⊤m j is symmetric and positive

definite. The optimal α is therefore the solution of the

optimization problem:

max
α

α⊤Gα subject to α⊤α = 1, (3)

where the resulting α is the leading G eigenvector. Conver-

gence to a local maximum is guaranteed by starting with an

initial guess for α and iteratively compute Q given α and

α computation given Q until convergence. This procedure is

termed basic Q−α .

A more advanced method, used in this study, to achieve

a higher convergence rate and higher result accuracy, is to

embed the α computation with the orthogonal iteration cycle

to compute the k eigenvectors, as described next.

Definition 2: (Power-Embedded Q−α Method ) Let M

be an input matrix of size n×q with rows m⊤
1 , . . . ,m⊤

n , and

an orthonormal matrix Q(0) of size q×k. The following steps

have to be performed throughout a cycle of iterations of index

r = 1,2, . . . :

Algorithm 1 Power-Embedded Q−α standard method

for r = 1 to n do

1. Let G(r) =
(

MM⊤)
(

MQ(r−1)Q(r−1)⊤M⊤
)

2. Let α(r) be the largest G(r) eigenvector.

3. Let A(r) = M⊤D(r)M, where D(r) is D(r) = diag(α(r))
4. Let Z(r) = A(r)Q(r−1)

5. Z(r) QR−−→ Q(r)R(r)

end for

This method is significantly more efficient than the basic

method described before (Definition 1) and achieves higher

performance [17]. The steps 4 and 5 consist of the orthogonal

iteration, namely, if only these steps were repeated, it would

converge to the eigenvectors of A(r). However, the algorithm

does not repeat the steps 4 and 5 only, it recomputes the

weight vector α (steps 1,2 and 3) before applying another

cycle of steps 4 and 5. It is demonstrated in [17] that the

addition of α recalculation does not alter the convergence

property of the ortogonal iteration method, and therefore the

complete method converges to a local maximum.

C. Clustering

The selected feature set is clustered in two stages. The first

one corresponds to centroid initialization. It is based on the
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J-H-means clustering algorithm [7]. The objective function

for this algorithm is the Minimum Sum-of-Squares (MSS)

[13]. After a random initialization, every point p j out of a

sphere of radius ε with center at qi, i = 1 : m (qi is the i-

th of the m centroids) is considered a centroid candidate.

Thus, p j replaces a current centroid qk. After updating and

computing the MMS, the process is repeated while MMS

becomes more optimal. The process stops when there is no

further MMS optimization. This method is described in detail

in [13]. This initialization is aimed at avoiding convergence

to local minimums.

The second clustering stage computes the final partition.

It is based on the Gaussian Expectation Maximization Clus-

tering (GEMC) algorithm [5]. Its objective function is a

linear combination of gaussian distributions centered at each

centroid:

GEM(X ,C) = −
n

∑
i=1

log

(

k

∑
j=1

p(xi/q j)p(q j)

)

, (4)

where p(xi/q j) is the probability of xi, since it is generated

by a gaussian distribution centered at q j, and p(q j) is the a

priori probability of the cluster whose centroid is q j. The log

function is used for simplicity, and the minus sign accounts

for minimization. The member and weight functions are

respectively:

mGEM(q j/xi) =
p(xi/q j)p(q j)

p(xi)
wGEM(xi) = 1

(5)

The GEMC employs a soft member function, assigning a

membership level to xi for every cluster. The Bayes rule is

used to compute mGEM , where p(xi) = ∑k
j=1 p(xi/q j). The

term p(xi/q j) can be computed as:

p(xi/q j) = f (xi,µ ,Σ j) =
e
− 1

2 (xi−µ)Σ−1
j (xi−µ)t

|Σ j|
1
2 (2π)−d/2

(6)

where µ is the center (µ = q j), d is the size (d = n), and

Σ is the covariance matrix. According to Bayes’s rule, the

matrix Σ j can be unique (Σ j = Σ = cov(X)) or compute one

for each cluster (Σ j = cov(C j), j = 1, . . . ,k).

III. RESULTS AND DISCUSSION

A. Results

The results are shown in Figs. 2 and 1, and in Table II.

Fig. 2 shows the relevance of the feature set in x axis,

from f1 to f90 for different records of the experimental

dataset, selected randomly. The relevance falls in the interval

0 to 1. Fig. 1 depicts an example where the heartbeat

set of record 207, exhibits better separability for relevance

vector maximums than for minimums. Table II shows the

clustering results using the selected features. The record

is shown in the first column, the number and heartbeat

type is shown in the second column, and the performance

measures in the third columns (Sensitivity (Se), Specificity

(Sp), Positive Predictive Accuracy (PPA) and Clustering

Performance (CP)), described in [13]. The number of clusters

TABLE II

CLUSTERING RESULTS USING THE FEATURE SET

DESCRIBED IN THE TEXT

Beat type Performance measure%
Rec. N L R V A Se Sp PPA CP

207 1457 85 105 106 100 100 100 100
111 2121 1 100 100 100 100
109 2490 38 97.3 100 99.6 99.7
118 2164 16 96 100 100 100 100
212 922 1824 100 99.6 100 99.8
214 2000 256 94.9 99.3 95.8 97.3
217 244 162 99.4 99.6 99.6 99.6
105 2524 41 100 100 100 100

total 3690 8068 4073 619 202 98.9 99.8 99.4 99.6
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Fig. 1. Features with high relevance vs. low relevance for record 207,
selected by the Q-alpha algorithm 1.

for all the experiments was set to 8. It is a tradeoff between

computational cost and accuracy.

B. Discussion

As can be seen in Fig. 2, regardless of the heartbeat types

in the record, the relevance analysis modifies the weight

of each feature according to the inter-cluster separability.

Namely, the relevance of feature subset S can be under-

stood as the cluster coherence, using the selected features,

measured by means of the afinity matrix As. This matrix,

in a quadratic form, shows that its k larger eigenvalues

can represent the cluster coherence, and the corresponding

eigenvectors, the coordinate weights in such cluster. Note

that the number of iterations needed (n value in the algorithm

described above) for the Q-α to converge, is lower or equal

to 4 in all the cases studied in this work. Therefore, the

computational cost can be kept low even for long term

records.

Regarding Fig. 1, it can be demonstrated experimentally

that there can be feature subsets that exhibit better cluster

coherence than others, although all the features used in this

study have been successfully used in other works (Table I).

Table II shows high performance clustering results, both Se >
94.9% and Sp > 99.3%.

IV. CONCLUSION

This work describes a methodology to optimize the feature

selection stage for the analysis of Holter records. It demon-

strates that a feature subset can offer a good performance
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Fig. 2. Relevance vector α of the feature set (Table I) for some records from the MIT/BIH database .

from the cluster separability point of view. This method can

also be applied to other feature sets.

The method proposed achieves a clustering performance

higher than 98 % on average. This is very useful to analyse

Holter records in an unsupervised manner. As future work,

we plan to study several algorithm improvements based on

the Laplacian spectrum of the afinity matrix, which adds

a normalization term to it. This assures its convergence

for cases where very low or very high feature values pose

problems to compute the maximum eigen vector in the

algorithm 1.

REFERENCES

[1] AAMI. Recomended Practice for Testing and Reporting Performance

Results of Ventricular Arrhythmia Detection Algorithms. ANSI/AAMI
EC57:1998/(R)2003. Association for the Advancement of Medical
Instrumentation, Arlington, VA 22201-5762, 1999.

[2] C. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press Inc., New York, 1995.
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