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Abstract - By modeling evoked potentials (EPs) as 
random vectors in which the EP samples are random 
variables, a generalized strategy is introduced to 
determine multivariate central-tendency estimates such 
as the arithmetic mean, geometric mean, harmonic 
mean, median, tri-mean, and trimmed-mean.  
Additionally, a generalized strategy is introduced to 
develop minimum-distance classifiers based on central 
tendency estimates.  Furthermore, procedures are 
developed to fuse the decisions of the nearest-estimate 
classifiers for multi-channel EP classification.  The 
central-tendency estimates of real EPs are compared and 
it is shown that although the mathematical operations to 
compute the estimates are quite different, the EP 
estimates are similar with respect to their overall 
waveform shapes and latencies.  It is also shown that by 
fusing the classifier decisions across multiple channels, 
the classification accuracy can be improved significantly 
when compared with the accuracies of individual channel 
classifiers. 

 
Index Terms  -  Central tendency estimation, EP 

averaging,  EP classification,  Evoked potentials. 
    

I. INTRODUCTION 
 
The primary goal of this paper is to introduce alternatives to 
the arithmetic averaging for estimating evoked potentials 
(EPs) and to design and evaluate minimum-distance 
classifiers based on the alternative EP estimates.  EPs are 
brain responses that are time-locked to the onset of an 
external event such as the presentation of an audio or a video 
stimulus.  The accurate classification of EPs is of utmost 
importance because ERPs are used extensively in numerous 
human cognition studies and in clinical evaluations. 

The most common estimate of an EP is obtained 
through time-locked ensemble averaging [1]-[4] in which the 
“average” is the sample arithmetic mean.  The sample mean 
is the most often used measure of the central-tendency of a 
data distribution. There are other measures of central-
tendency such as the geometric mean, harmonic mean, 
mode, median, tri-mean, and the trimmed-mean.  These 
measures are used typically to measure the “center” of 
univariate data distributions and  are seldom used  for multi- 
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variate data such as EPs. In this paper, we introduce a 
generalized strategy for estimating central tendency 
measures for multivariate data and show how these estimates 
can be used to design minimum-distance classifiers for 
multivariate data.  Six different central tendency estimates of 
real multichannel EPs are compared and classification 
experiments are designed to evaluate minimum-distance 
classifiers using the six EP estimates.  Experiments are also 
designed to evaluate the combination of classifiers on single-
channel and multichannel EPs.  
 

II. VECTOR MODEL FOR EP ESTIMATION 
 

ERPs are multivariate signals with dimensions that are a 
function of the sampling rate and the duration.  By modeling 
the EP as a D-dimensional random vector Z  in which each 
element is a random variable Dddz ,...,2,1),( = , we 
introduce a unified method for estimating the central 
tendency of EPs from an ensemble of L single-trial EPs 

LiZi ,...,2,1, = as shown in Figure 1.  The random variations 
in each element are due to the background EEG noise and 
latency shifts [1]-[4].  Each row in the figure is a single-trial 
EP of the ensemble.  The vector estimate and its elements 
are represented by Z and Dddz ,...,3,2,1),( = respectively.  
The figure shows that the vector central tendency EP 
estimate is obtained from the scalar central-tendency 
estimate of each vector element across the single-trial 
ensemble.  For the arithmetic mean, the estimate )(dz  is 
given by 

∑
=

=
L

i
i dz

L
dz

1
)(1)(  

where Lidzi ,...,2,1),( =  is the dth element of the ith 
single-trial EP.  The geometric mean estimate is given by 
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The harmonic mean estimate is given by 

∑
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In order to determine order-statistic based central-tendency 
estimates, the elements Lidzi ,...,2,1),( =  are ascending 
rank-ordered such that )()( 1 dzdz ii +<  for 

.1,...,2,1 −= Li Let Lidzi ,...,2,1),(~ =  be the rank-ordered 
samples, then, the median estimate is given by 
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The tri-mean estimate is given by 
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The trimmed-mean estimate is given by 
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where α is the number of samples deleted from 
Ldzi ,...,2,11),(~ = .  That is, the trimmed-mean estimate is 

given by first deleting the 2/α  lowest ranked samples and 
the 2/α  highest ranked samples and then computing the 
arithmetic mean of the remaining )( α−L  samples.  
 

III.  NEAREST-ESTIMATE EP CLASSIFICATION 
 

EPs are difficult to classify because they are embedded in 
the ongoing background EEG with signal-to-noise ratios 
(SNRs) typically less than –5 dB.  In general, classification 
is conducted on ERPs averaged over a large number of 
single-trials because signal averaging improves the signal-
to-noise ratios (SNRs) of ERPs.  The improvement in 
classification accuracy through signal averaging has been 
shown systematically in [2],[3].   

The nearest mean classifier is often used in practice 
because it is relatively simple to implement given that it 
requires only an estimate of the mean.  Furthermore, it is 
optimal if the feature vectors are Gaussian, the features are 
independent and each feature has the same variance, and the 
prior probabilities of each class are equal.  The nearest mean 
classifier also tends to give good results even if the 
conditions for optimality are not satisfied. For a C-class 
problem, the discriminant function of the nearest mean 
classifier may be modified to give the general expression for 
a nearest-estimate classifier as   

c
T
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where cZ is a central-tendency vector of the patterns in class 

.,...,2,1 Cc =  A test vector Z  is assigned to the category *c  
given by 

)}({maxarg* Zgc c
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IV.  FUSION CLASSIFIERS 

 
Classifiers may be combined in different ways in attempts to 
improve the performance [5].  For EP classification, the 
outputs of the different nearest-estimate classifiers operating 
on the EPs of a given channel can be combined. 
Alternatively, the outputs of one type of nearest-estimate 
classifier operating on multiple channels can be combined.  

Yet another possibility is to combine the outputs of different 
nearest-estimate classifiers operating on multiple channels.  
We consider all possibilities through the development of a 
generalized decision fusion strategy.  The decisions of the 
nearest-estimate classifiers are combined into a decision 
fusion vector and the final decision of the EP brain activity 
class is then made by classifying the decision fusion vector.  
If  Bjb j ,...,2,1, =  is the decision of the thj  classifier and 

T
BB bbbY ),...,,( 21=  is the decision fusion vector formed by 

concatenating the independent decisions, the Bayes 
discriminant function for class c can be written as [3] 
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where ,1)( axifax ==−δ ,0)( axifax ≠=−δ  
BjcabPp jcaj ,...,2,1),/(/, ===  is the probability that 

ab j =  when the true class is c, and cP  is the a priori  

probability of class c.  The final decision *
Bc  resulting from 

fusing B decisions is given by 
)]([maxarg*

Bc
c
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V.  EP Data 

 
The data selected to demonstrate the estimation and nearest-
estimate classification of EPs were borrowed from a 
previous study in which a subject made explicit 
match/mismatch comparisons between 2 sequentially 
presented stimuli [2].  The goal of the study was to show that 
EPs can reliably identify when a match occurs between what 
a subject thinks and sees.  EP data were collected from 6 
electrodes placed on the scalp over frontal (F3, F4), temporal 
(T3, T4), and parietal (P3, P4) regions over the left and right 
hemispheres.  A total of 280 single-trial match and 280 
single-trial mismatch responses were collected for each 
ensemble.  Further details of the data collection and 
preprocessing operations can be found in [2].  
 

VI.  ESTIMATION RESULTS 
 

Figure 2 shows the six estimates of the match and mismatch 
EPs of obtained from the single-trial EPs of the match and 
mismatch ensembles.  Only the estimates of channel F3 are 
shown for brevity.  For the trimmed mean, alpha was chosen 
to be 56 samples, that is, 10% of the samples were dropped 
from each end of the rank-ordered samples.  Although the 
mathematical operations used to compute the estimates are 
quite different, it is interesting to observe the similarity 
between the EP estimates with respect to the shapes and 
latencies.  Also quite interesting to note is that that the 
individual samples of median and the tri-mean estimates are 
selected, very likely, from different single-trial EPs.  For 
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example, )(nz  may be )(nzi  whereas ,),( nmmz ≠ may be 
)(mz j .  That is )(nz  is the nth sample from the ith single-

trial EP and  )(mz  is the mth sample from the jth single-trial 
EP.  This is also true for the trimmed-mean in the sense that 
the arithmetic mean of the individual samples is not 
necessarily computed using the samples of the same )( α−L  
single-trial EPs.  It is also likely that samples from different 
single-trials are selected for the tri-mean.  Yet, the shape and 
latencies are maintained in these cases.  Similar observations 
were made for the EP estimates of the five other channels. 
 

VII.  CLASSIFICATION EXPERIMENTS 
 

The first set of experiments was designed to classify the 
match and mismatch EPs of the six channels using the six 
estimates.  Consequently, a total of 36 nearest mean 
classifiers were implemented.  The second set of 
experiments were designed to optimally fuse the decisions of 
the six classifiers for each channel.  The third set of 
experiments optimally fused the decisions of across the six 
channels for each classifier type.  Finally, the fourth set of 
experiments optimally fused the decisions of the six 
classifiers from the six channels. 

Through random partitioning of the match and 
mismatch ensembles into training and test sets [2],[3], each 
classification experiment was repeated 200 times and the 
classification accuracy was estimated as the average across 
the 200 trials.  The classification accuracies, expressed as 
percentages, are summarized in Table I and Table II for EPs 
averaged across r=2 and 4 single-trials, respectively.  The 
results in the tables can be interpreted as follows:  in Table I, 
the row labeled F3 shows the classification accuracies 
obtained for the EPs of channel F3 using the six different 
estimates.  The last column labeled Classifier Fusion 
contains the results of fusing the nearest-estimate decisions 
for each channel.  Therefore, the last element in the F3 row 
shows the classification accuracy when the six decisions 
were fused and classified using a discrete Bayes classifier.  
The remaining rows labeled F4 to T4 can be interpreted in a 
similar fashion.  The last row labeled Channel Fusion shows 
the results of fusing the decisions of each classifier type 
across the six channels.  For example, the last element in the 
column labeled Arithmetic Mean is the result of fusing the 
six decisions of the nearest arithmetic mean classifiers for 
the six channels.  Finally, the last element in the lower right 
corner shows the results of fusing the decisions of all 36 
nearest-estimate classifiers.   

Based on the results in the tables, the following 
conclusions can be drawn: 
1. For the EPs of each channel, the six nearest-estimate 
classifiers yield different classification accuracies, however, 
the differences are quite small.  This is not unexpected 
because the six central tendency estimates, as shown in 
Figure 2, are not very different from each other.     
2. Fusing the decisions across channels improves the 
performance when compared with the individual channel 

accuracies.  However, fusing the decisions across the 
classifiers for each channel did not result in an improvement. 
This again is due to the fact that the estimates are quite 
similar.  The performance improved by fusing all 36 
classifier decisions.  However, the improvement was slightly 
less than that obtained by fusing the decisions of the nearest 
mean classifiers across the six channels.   
3. Pairwise t-tests were also performed on the classification 
accuracies obtained by fusing the decisions of the nearest 
mean classifiers across the six channels and the best 
individual channel classification accuracies.  The following 
results were obtained for the differences in the classification 
accuracies:  (79.01 vs. 72.19, p=2.05e-108 in Table I);  
(86.64 vs. 80.41, p=7.9945e-75 in Table II).  These very 
small p-values suggest that the differences in the 
classification accuracies are statistically significant. 
 

VIII. CONCLUSIONS 
 

A unique study was conducted to compare different central- 
tendency estimates of EPs, to develop and compare the 
performances of minimum-distance classifiers based on 
different central-tendency estimates, and to combine the 
decisions of the nearest-estimate classifiers in order to 
improve the classification accuracies over the individual 
nearest-estimate classifiers.  The estimation results quite 
interestingly showed that the although the mathematical 
operations to compute the central tendency estimates were 
quite different, the estimates of the EPs were similar in the 
sense that the shapes and latencies were similar across the 
six estimates.  It was also shown that the improvement in 
performance by fusing classifier decisions across channels is 
statistically significant when compared with the performance 
of the best individual channel classifiers. 
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TABLE I  Classification accuracies for r=2 

     r = 2  Arithmetic 
     Mean 

Geometric
    Mean 

Harmonic 
    Mean 

 Trimmed 
    Mean 

  Median  Tri Mean Classifier 
   Fusion 

      F3 72.19 71.96 71.73 71.82 70.57 71.35 71.69 
      F4 69.39 69.21 69.06 69.15 68.67 68.95 69.16 
      P3 69.67 69.39 69.13 69.77 69.59 69.7 69.68 
      P4 65.00 64.92 64.86 65.20 65.05 65.23 65.07 
      T3 69.60 69.3 69.13 69.44 69.16 69.31 69.39 
      T4 67.47 67.59 67.71 67.61 67.15 67.54 67.62 
 Channel 
   Fusion 

79.01 78.66 78.39 78.63 77.65 78.35     79.00 

 
TABLE II  Classification accuracies for r=4 

     r = 4  Arithmetic 
     Mean 

Geometric
    Mean 

Harmonic 
    Mean 

 Trimmed 
    Mean 

  Median  Tri Mean Classifier 
   Fusion 

      F3 80.41 80.24   80.02   80.14 78.68     79.67     80.00 
      F4 76.38 76.22   76.03   76.12 75.73     75.98     76.11 
      P3 76.30 76.16   75.89   76.39 76.05     76.30     76.26 
      P4 69.92 69.83   69.68   70.14 69.98     70.16     70.00 
      T3 76.38 76.17   75.96   76.16 75.74     75.99     76.14 
      T4 74.24 74.42   74.51   74.33 73.92     74.33     74.33 
 Channel 
   Fusion 

86.64 86.44     86.19   86.28 85.39     85.93     86.57 
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    Fig. 1  Central-tendency estimation of EPs from an ensemble of single-trial EPs 
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Fig. 2  Central-tendency estimates  (a) Match EPs  (b) Mismatch EPs 
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