
  

  

Abstract— In this work, it is proposed a technique for the 
feature extraction of electroencephalographic (EEG) signals for 
classification of mental tasks which is an important part in the 
development of Brain Computer Interfaces (BCI). The 
Empirical Mode Decomposition (EMD) is a method capable to 
process nonstationary and nonlinear signals as the EEG. This 
technique was applied in EEG signals of 7 subjects performing 
5 mental tasks. For each mode obtained from the EMD and 
each EEG channel were computed six features: Root Mean 
Square (RMS), Variance, Shannon Entropy, Lempel-Ziv 
Complexity Value, and Central and Maximum Frequencies, 
obtaining a feature vector of 180 components. The Wilks’ 
lambda parameter was applied for the selection of the most 
important variables reducing the dimensionality of the feature 
vector. The classification of mental tasks was performed using 
Linear Discriminate Analysis (LD) and Neural Networks (NN). 
With this method, the average classification over all subjects in 
database was 91±5% and 87±5% using LD and NN, 
respectively. It was concluded that the EMD allows getting 
better performances in the classification of mental tasks than 
the obtained with other traditional methods, like spectral 
analysis.  

I. INTRODUCTION 
 Brain-Computer Interface (BCI) is a system that 
provides an alternative channel of communication 

between the brain and the environment around an individual 
having neuromuscular disabilities [1]. The feature extraction 
is an important part in BCI development. In this work is 
proposed a method to extract features from 
electroencephalographic EEG signals based on the 
Empirical Mode Decomposition (EMD). A review of signal 
processing techniques in feature extraction on EEG signal 
for BCI is shown in [2]. The EMD is an innovative 
technique for the analysis of nonlinear and nonstationary 
time series [3], such as EEG. Hence, EMD is proposed as a 
new tool for feature extraction of EEG signals for BCI 
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applications.  
The results achieved with EMD are higher than those 

reported in other works with traditional EEG signal 
processing, utilizing the same database [4-7]. 

II. EEG DATABASE 
The EEG database utilized in this work was acquired by 

Keirn and Aunon (Colorado State University) [4] and is 
available on-line [8]. Electrodes were placed at O1, O2, P3, 
P4, C3 and C4 and referenced to A1 and A2. Bandpass analog 
filters were set at 0.1–100 Hz. Signals were recorded for 10 
s during each task and each task was repeated for ten 
sessions. Seven subjects, 21 to 48 years old, participated in 
the study involving a total of five distinct tasks, namely: 

Baseline Task (Base): The subject was told to simply 
relax and try to think of nothing in particular. 

Mathematical Multiplication Task (Math): The subject 
was given a nontrivial multiplication problem to solve.  

Geometric Figure Rotation (Rot): The subject had to 
visualize a 3D object being rotated about an axis. 

Mental Letter Composing (Lett): The subject was 
instructed to mentally compose a letter to a friend or relative. 

Visual Counting (Count): The subject was asked to 
imagine a blackboard with numbers being written on it. 

The subjects were instructed to not vocalize or make overt 
movements while solving the tasks. 

Hence, the EEG signal of each mental task of 10 s was 
divided into 9 segments of 1 s of duration. The first and the 
final 0.5 s were discarded to avoid the extreme effect of the 
filtering. The subjects participated in a different number of 
sessions, resulting in different number of segments per 
mental task, i.e. Subject 5 (135 segments); Subjects 1, 3 and 
6 (90 segments); Subjects 2 and 7 (45 segments) and Subject 
4 (81 segments). 
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Fig. 2: Decomposition of an EEG segment of 1 s length in its IMF. 

III. METHODOLOGY  
A scheme of the proposed method is shown in Fig.1, 

followed by a description of each block. 

A. Preprocessing 
EEG signals were digitally filtered with a Butterworth 

bidirectional filter of order 5 with a passband between 6 Hz 
and 40 Hz, in order to analyze the α, β and γ bands. 

B. Feature extraction 
The feature extraction is divided into two parts; the first 

one is the EMD of the EEG, whereas the second part is the 
estimation of different time and frequency parameters. 

1) The Empirical Mode Decomposition 
If we assume that any signal is composed of a series of 

different intrinsic oscillation modes, the EMD [3] can be 
used as a method that carries out this decomposition of the 
incoming signal into its different Intrinsic Mode Function 
(IMF). An IMF is a function that satisfies two conditions: 

1. In the entire signal, the number of extremes and the 
zero-crossings must be equal or differ at most by one. 

2. At any point, the mean value of the envelope defined 
by the local maxima and the envelope defined by the 
local minima must be zero (or close it). 

Given the incoming signal x(t), the algorithm of EMD is 
based on a sifting process that can be summarized as: 

1. Interpolate all the local maxima and minima in the 
signal with a cubic spline line, to produce the upper 
and lower envelope.  

2. Repeat for the local minima to produce the lower 
envelope.  

3. Compute the mean of both envelopes m1. 
4. Extract the detail  h1 =x(t)-m1                                (1) 
5. Repeat the steps 1 to 4, and consider the detail hi as 

the data, until detail h1 can be considered an IMF. 
6. After k iterations, the detail hk is an IMF and is 

designated as:IMF1 = hk                      (2) 
7. Iterate steps 1 to 6 on the residual rj in order to obtain 

all the IMFs of the signal: 
rj = x(t) − IMF1− IMF2−…− IMFj    (3) 

The procedure ends when the residual rj is either a 
constant, a monotonic slope, or a function with only one 
extreme. The result of the EMD process produces n IMFs 
and a residue signal rn. The original signal x(t) can be 
recovered summing up the n extracted IMF and the residue: 

             
1

( )
n

j n
j

x t IMF r
=

= +∑          (4) 

 

In order to obtain the IMFs of the signal an EMD toolbox 
for Matlab® was utilized and is available on line [9]. Fig. 2 
illustrates an example of the IMFs of an EEG signal, 
showing that the lower-order IMFs capture the faster 
oscillation modes of the signal, whereas the higher-order 
IMFs capture the slower oscillation modes. As it can be 
seen, the IMF 4 and 5 show frequencial components that 

supposedly would have been eliminated in the filtering 
stage, but the amplitude of these IMFs are 20 times minor 
than IMF 1. This effect may be attributed to some residual 
components on the filtering stage. Besides, generally, these 
IMFs are discarded in the feature selection process. 

2) Estimated Parameters  
The EMD algorithm was applied to each EEG 1 s 

segments. Afterward, the EMD is able to extract no more 
than five IMFs and the residue for each 1 s EEG segment 
(Fig.2). For each one of these five IMFs, different 
parameters can be computed. The proposed parameters 
utilized in this work are the following:  

• Root Mean Square (RMS), 
• Variance, 
• Shannon entropy [10],  
• Lempel-Ziv Complexity Measure [11],  
• Central Frequency (50 % of spectrum energy), 
• Maximum Frequency (95 % of spectrum energy).  
Some parameters were chosen since they are commonly 

used in BCI (RMS, variance), LZ quantifies the complexity 
of a signal analyzing its spatio-temporal patterns and was 
used for analyze EEG signals in other areas [12]. The central 
and maximum frequencies were used as descriptors of the 
band-with of each IMF. Entropy was used as a different 
metric, given that it measures the average amount of 
information from a measurement.  

C. Feature Selection 
A disadvantage arising at this point is that the feature 

vector that would enclose all the features calculated with the 
above parameters would be too large, i.e., each feature 
vector contains 180 parameters (5 IMFs x 6 parameters × 6 
channels). Consequently, it is essential to do a feature 
selection in order to solve this curse-of-dimensionality 
inconvenience [13]. This selection is performed with a 
stepwise method based on the statistical parameter Wilks’ 
lambda (WL). The WL measures the ratio of within-group 
variability respecting the total variability on the 
discriminator variables, and it is a measurement of the 
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TABLE I 
ACCURACY CLASSIFICATION OF MENTAL TASKS ON ALL SUBJECTS 

 

Mental Tasks 
combination

LD MLP LD MLP LD MLP LD MLP LD MLP LD MLP LD MLP LD MLP

Base-Count 84,86% 86,67% 86,95% 80,84% 74,03% 70,14% 98,44% 95,94% 71,67% 71,67% 94,86% 81,53% 90,00% 79,17% 85,83% 80,85%
Base-Lett 95,42% 96,11% 85,28% 87,23% 78,89% 79,17% 97,81% 94,69% 84,54% 80,19% 95,70% 93,33% 99,45% 93,89% 91,01% 89,23%

Base-Math 97,64% 98,33% 99,17% 79,17% 83,61% 83,89% 96,56% 91,72% 84,16% 87,31% 96,25% 94,17% 100% 84,45% 93,91% 88,43%
Base-Rot 98,89% 96,95% 89,17% 85,28% 74,16% 72,50% 86,09% 78,59% 83,42% 81,76% 97,78% 94,17% 91,67% 94,45% 88,74% 86,24%

Lett-Count 98,33% 98,06% 92,50% 92,50% 80,14% 76,81% 96,25% 91,25% 85,37% 81,57% 92,50% 86,25% 100% 89,72% 92,15% 88,02%
Lett-Rot 99,44% 98,89% 97,78% 93,89% 87,78% 81,67% 94,53% 93,28% 95,47% 90,37% 96,11% 92,08% 100% 94,72% 95,87% 92,13%

Math-Count 98,89% 96,94% 88,61% 83,61% 82,50% 79,03% 90,94% 90,16% 82,13% 82,78% 90,42% 90,70% 99,17% 81,94% 90,38% 86,45%
Math-Lett 100% 97,64% 98,89% 82,23% 87,64% 86,11% 95% 90,31% 85,28% 81,02% 94,72% 90,00% 99,45% 96,39% 94,45% 89,10%
Math-Rot 100% 96,95% 96,12% 92,50% 87,36% 81,11% 91% 92,34% 92,96% 93,98% 94,30% 91,25% 100% 89,45% 94,57% 91,08%
Rot-Count 76,67% 70,83% 90,00% 88,06% 73,20% 70,70% 80,16% 82,03% 86,30% 82,59% 93,47% 87,08% 93,9% 92,50% 84,81% 81,97%
Average 95,00% 93,74% 92,45% 86,53% 80,93% 78,11% 92,73% 90,03% 85,13% 83,32% 94,61% 90,06% 97,36% 89,67% 91,17% 87,35%

Subject 5Subject 1 Subject 2 Subject 3 Subject 4 MeanSubject 7Subject 6

LD: Linear Discriminate; MLP: Multi Layer Perceptron 

importance of the variables. Therefore, the more important 
variables for the analysis should be selected, i.e. the 
variables that contribute with more information. Besides, the 
correlated variables are discarded in this process [14]. 

In a p-dimensional space constructed with p variables and 
with the matrixes Bp x p and Wp x p representing the square 
sum and cross products between groups and within-groups, 
respectively; the WL can be defined as the ratio between 
their determinants [14]:   

 

WL W B W= +          (5) 

Then, the value of WL is transformed into the general 
multivariate statistical F, which allows contrasting 
significant differences between groups. A variable is 
accepted in the analysis, if F value is higher than 3.84 (F to 
enter) and, once included, the variable is rejected if its F 
value is smaller than 2.71 (F to exit). The stepwise method 
using the WL was implemented within each subject. 

D. Classifier 
In order to classify the different mental tasks, two 

different classifiers were implemented; a linear classifier and 
a nonlinear one. 

1) Linear Classifier: 
A linear discriminate (LD) classifier is the simplest 

classifier; which consists of a linear combination of 
variables as stated below: 

pp XXXy µµµµ ++++= ......22110         (6) 

where y is the output value of the discriminate function; µi 
are the coefficients of the discriminate function; Xi are the 
discriminate variables at each case and p is the number of 
variables in the analysis [14]. 

2) Nonlinear Classifier:  
As a nonlinear classifier, neural networks were chosen. A 

multilayer perceptron (MLP) [15] with two hidden layers 
(with 10 and 5 neurons per layer, respectively) was 
implemented using Matlab®. In the output layer, one neuron 
per each mental state was utilized. The MLP was trained 
with Levenberg-Marquard backpropagation method, and an 

early stopping method was used to stop the training process, 
with 90% of the data used to train it, and the remaining 10% 
was used to validate it.  

IV. RESULTS 
The feature selection is an important issue in order to 

solve the curse of dimensionality [13] and with the 
application of WL value, the initial feature vector 
(containing 180 parameters) is reduced to a small number of 
only 16±7 parameters (depending on the subject and the 
mental task) in a one-versus-one classification scheme.  
Generally, only parameters from the foremost IMFs (1st to 
3rd) were chosen in the analysis.  

Table I shows the results obtained with the EMD in a one-
versus-one scheme for each subject. These values are 
obtained using a 10-fold cross-validation repeated over four 
times, in order to obtain more accurate results. Therefore, 
the values shown in this table are the average values over 
results obtained in each cross-validation. In Fig.3, the 
average values of each subject and the mean over all 
subjects are presented. 

V. DISCUSSION 
The one-versus-one classification scheme shown in Table 

I indicate that the Subject 1 obtained, for all the classifiers, 
results above 80% for almost all the possible combinations. 
Indeed, for some combinations, a value of 100% of ACC is 
attained. For Subject 2, a similar behavior is observed; i.e., 
greater results to 83% are obtained. Subject 3 showed the 
worst overall performance, with results lying between 70% 
and 87%. In the case of Subject 4, the results are similar to 
those of Subjects 1 and 2. Subject 5 attained values greater 
than 80% except in Base-Count combination (70%). 
Subjects 6 and 7 had an average performance of 94% and 
97% with LD, respectively; and 89% with the MLP.  

In the majority of mental tasks combinations, the best 
results were obtained using LD for all subjects. This fact is 
easy to see on Fig.3, where the averaged ACC results of 
each subjects are presented. An overall average over all 
subjects shows very high performances: 91% for LD and 
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87% MLP. The ACC attained with this method were higher 
than the results documented in similar works with the same 
database [5-7]. In [5], power and asymmetry ratios of EEG 
bands were used with an average ACC of 86.5% on 4 
subjects with an Elman neural network. In [6], 
autoregressive (AR) modelling and multilayer perceptron 
were used with ACC of up to 71%. The best result obtained 
in [7] was 72%, obtained with AR modelling and support 
vector machines. 

It has been found that the WL parameter allows choosing 
the more suitable variables in the analysis, and to solve the 
curse-of-dimensionality (an important aspect of BCI 
applications [13]) by reducing the feature vector of 180 
variables into a small number of 16±7 variables for each 
combination, which allows a better ACC. Generally, only 
the parameters from the foremost IMFs (1st to 3rd) were 
selected by WL, i.e., it is not necessary to extract all the 
IMFs of the signal. These IMFs contain, principally, 
frequencies ranging in α (8-13 Hz), β (14-30 Hz) and δ 
bands (> 30 Hz), those related with alertness and thinking 
states. The more chosen parameters were, in descendent 
order of importance, RMS, variance, LZ, entropy, maximum 
frequency and central frequency. The feature selection 
through the WL parameter accomplishes this objective, 
while being easy and fast to compute as well. 

 The EMD offer an advantage over other signal analysis 
methods, like spectral analysis or wavelet transform; since 
EMD is adaptive to the signal, whereas, in Fourier and 
wavelet transforms the basis are fixed. Hence, EMD allows 
extracting better features from non-stationary signals, such 
as EEG. 

VI. CONCLUSIONS  
In this work an alternative extraction features method is 

proposed for the processing of EEG signals and 
classification of mental tasks. It is based on the EMD and 
the estimation of several parameters, namely RMS, variance, 
Shannon entropy, LZ complexity value, and central and 
maximum frequencies. A reduction of dimensionality was 
performed, based on the WL parameter. Two different 
classifiers (LD and MLP) were employed.  

This method allows attaining very high results in the ACC 
of mental tasks, obtaining performances greater than 90% 
for almost all subjects in a one-versus-one scheme using any 
classifier. The LD performs better than MLP with this 
method. The results were higher than those documented in 
similar works using the same database [5-7]. In these works 
ACC of 86%, 71% and 72% were presented in [5], [6] and 
[7], respectively. Although, these comparisons give us an 
idea of the performance of our method, it is not suited at all, 
due to differences in the subjects analyzed on database (all 
the subjects were used in this work), different classifiers, 
and different training and validation sets used in those 
works.  
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