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Abstract— In order to control a myoelectric hand, it is 

necessary to discriminate among motions using 

electromyography (EMG) signals. One of the biggest problems 

in doing so is that EMG feature patterns of different motions 

overlap, and a classifier cannot discriminate clearly between 

them. Therefore, we propose a motion discrimination method to 

solve this problem. In this method, representative feature 

patterns are extracted from the EMG signals by using a 

self-organized clustering method, and user’s intended motions 

are assigned as class labels to these feature patterns on the basis 

of the joint angles of the hand and fingers. The classifier learns 

using training data that consists of feature patterns and class 

labels, and then discriminates motions. In an experiment, we 

compared the discrimination rates of the proposed and 

conventional methods. The results indicate that the 

discrimination rate obtained with the former is 5–30% higher 

than that obtained with the latter; this result verifies the 

effectiveness of our method. 

I. INTRODUCTION 

ecently, significant advancements have been made in 

robotics technology, and it has now become possible to 

control machines using bio-signals from the brain or muscles. 

One example of the application of this technology is the 

myoelectric hand; it can be used as a replacement for missing 

upper limbs of amputees and can perform many functions that 

are normally performed by the upper limbs. One of the 

difficulties in developing the myoelectric hand system lies in 

enabling the prosthesis to be controlled using EMG signals.  

Generally, the myoelectric hand is controlled as follows. The 

estimation of a user’s intended motion from EMG signals 

constitutes a type of pattern recognition problem. Fig. 1 shows 

a framework in which a user’s intended motion is 

discriminated on the basis of EMG signals. There are two 

phases: a learning phase and a pattern recognition phase. In the 

pattern recognition phase, a classifier outputs myoelectric 

hand motions depending on control rules. The detailed process 

is as follows. The user performs a motion, and the EMGt is 

measured at time t. This measured EMGt is then used as the 

input signal to the classifier. A feature extraction function GFE 

generates a feature vector Xt from the EMGt; Xt represents the 

characteristics of the intended motion. A  
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recognition function GPR, which has a classification function 

parameter W, discriminates a motion yk from input feature 

vector Xt and outputs the myoelectric hand motion. The 

parameter W determines the control rules for the classifier. 

These rules are updated using a training data set Ψ during the 

learning phase before users begin to discriminate motions. 

Training data consist of feature vectors and intended motions 

assigned as class labels. This training data is very important 

because it strongly affects the performance of the classifier.  

In pattern recognition, the amplitude or frequency is typically 

used as the feature vector. With regard to motion 

discrimination, several classification functions have been 

proposed. These functions are divided into two types: (i) linear 

functions and (ii) nonlinear functions. The former include the 

AR model [1] and the linear discriminant function [2]. The 

latter include various artificial neural networks [3,4]. 

As mentioned previously, many classification methods have 

been proposed; however, only a few studies have attempted to 

address the issue of developing methods for the generation of 

training data. Conventional motion discrimination methods 

require users to take the initiative to generate training data. In 

these methods, users sequentially assign each particular 

motion to its corresponding feature vectors to generate the 

training data [5]. In other words, feature patterns extracted 

from the EMG signals during motion directly become a 

component of training data. In this study, we refer to this 

method as the conventional method. In general, the classifier is 

easily able to discriminate among motions provided that the 

training data consisting of different motions do not overlap 

with each other. However, users usually do not consider the 

overlap when generating the training data. Occupational 

therapists or experts may advise users when generating 

training data; nevertheless, it is difficult to judge which training 

data is suitable for the classifier when the number of motions is 

large. As a result, the classifier is sometimes unable to 

effectively discriminate among different motions. 

In this study, we propose a method to discriminate motions 
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Fig. 1.  Framework of motion discrimination using EMG signals. 
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clearly from EMG signals. The challenge is to generate 

training data that would enable the classifier to easily 

discriminate among different motions. In our proposed 

method, we employ a self-organized method to generate 

representative feature patterns from all feature patterns of 

EMG signals measured during several motions; these 

representative feature patterns form the components of the 

training data. Subsequently, the user’s intended motions are 

assigned as a class label to each feature vector by using the 

joint angles of the hand and fingers. 

We verify the effectiveness of our proposed method by 

discriminating among some motions using both the proposed 

and conventional methods. We then compare the 

discrimination rate of both methods.  

II. SELF-ORGANIZED CLUSTERING METHOD FOR MOTION 

DISCRIMINATION 

In our proposed method for discriminating motion, we 

generate training data that enables the classifier to easily 

discriminate motion, and then reveal this training data to the 

users. Motion discrimination is considered to be successful if 

the feature patterns of users match those of the training data 

during the discrimination process. Therefore, users train 

themselves to match their patterns to the feature patterns 

contained in the training data.  

Our method is divided into the following two processes. 

 

A) Generation of representative feature patterns from EMG 

signals using self-organized clustering. 

B) Assignment of user’s intended motion as a class label to 

each representative feature pattern by using joint angles of the 

hand and fingers. 

 

An overview of the processes is showed in Fig. 2, and their 

details are explained below. 

A. Generation of representative feature patterns using 

self-organized clustering 

In the learning phase, we generate representative feature 

patterns from EMG signals using self-organized clustering. 

Users perform some motions such as grasp and open (shown in 

Fig. 4) that they intend to realize with the myoelectric hand. 

EMG signals are detected on the surface of the user’s skin and 

the joint angles of the user’s hand and fingers are measured 

during the motions. The feature extract function GFE (Fig. 2) 

receives EMG, which is the vector representing EMG signals 

of all motions, and generates the feature vector xi. X is the set 

of xi, where  

 niD

ii ,,2,1,|  xxX                (1) 

Here, n is the number of feature vectors that have been 

extracted. In this study, the amplitude and frequency of the 

EMG signals are selected as feature vectors. We employ the 

short-time Fourier transform and use the resultant spectrum of 

20–400 Hz. The power spectrum F is smoothed with Ip widths 

to acquire the rough features of the spectrum. The  
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smoothed spectrum is divided into N ranges, and the spectrum 

of 20+(380/N)*i Hz (i = 1,…,N) is extracted to yield feature 

vectors. The feature extract function of joint angles GFA (Fig. 

2) generates a joint angle vector A from the joint angles Φ. 

 niD

ii ,,2,1,|  aaΑ                (2) 

A is added to X; thus, each xi contains the angle information. 

Fig. 3 shows the process used to generate training data (Fig. 

2, GTR). In GTR, representative feature patterns are generated 

from X by using a vector quantization method that is a type of 

self-organized clustering (Fig. 3, (1)). In this method, the 

space of X is divided into subspaces, and a code vector is 

arranged in each subspace. This is similar to the Voronoi 

diagram, and each code vector represents a unique subspace 

[6]. We consider the code vector set Ξ as containing the 

representative feature patterns; these patterns are generated in 

the following manner.  

The code vectors ξj (j = 1,2,3) are located randomly in the 

space of the feature vector set X. We calculate the distance 

from xi (i = 0) to ξj (j = 1,2,3), and the position of the nearest ξj 

is updated by (3) as it approaches xi (i = 0). 

)( jijj ξxξξ                        (3) 

Here, α is the learning coefficient. We carry out the same 

process for every xi (i = 1,…,n) and update the position of ξj. 

Fig. 2.  Overview of the generation of training data using self-organized 

clustering in the learning phase. 

 

Fig. 3.  Process of generating training data (two-dimensional conceptual 

diagram). 
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Next, a new code vector is added to the space of X, and ξj is 

updated in the same manner. These steps are repeated until the 

number of code vectors required by the setup condition is 

satisfied. 

We add angle information to these resultant code vectors 

using the joint angle vector A. The angle information is used to 

assign a user’s intended motion to each code vector in the next 

step. The average joint angle of the nearest k feature vectors δi 

(i = 1,…,k) is set as the angle information of the code vector ξi. 

B. Assignment of user’s intended motion to representative 

feature patterns using joint angles of the hand and fingers 

The code vector set Ξ is a candidate for obtaining training 

data. In the process described in this section, we assign the 

user’s intended motion to individual code vectors on the basis 

of joint angles to generate training data. Joint angles are 

considered to be closely related to human motion, and 

therefore, they can be used as indicators of a user’s intended 

motion. Therefore, a user can easily adapt their EMG patterns 

to those of the training data. 

First, users perform some motions that they intend to realize 

with the myoelectric hand. They maintain their hand or finger 

posture for a few seconds, during which the joint angles of 

their hand and fingers are measured. These motions are called 

standard motions and the joint angle set Θ is used as criteria.  

 
Mk yyyy θθθθΘ ,,,,,

21
                 (4) 

θ is the joint angle vector of one motion, yk is the type of 

motion, and M is the maximum number of motions. Next, we 

calculate the Euclidian distance of joint angles between each 

component of Θ and Ξ, and the standard motion with the 

minimum distance is considered as a suitable candidate for the 

assigned motion. Here, we must determine the maximum 

permitted distance. If the feature vectors that are situated at a 

considerable distance from the standard motion are employed 

as training data, there is a high possibility that the feature 

vectors of different motions will be similar. Therefore, we set a 

threshold ε, and only when the distance is less than this 

threshold, the standard motion is assigned to the code vector 

as the user’s intended motion. Feature vectors with values 

greater than ε are rejected. A pair of data elements consisting 

of a code vector as a feature vector and a user’s intended 

motion as a class label constitutes the training data. In addition, 

the optimum value of ε is different for different individuals; 

therefore, ε is uniquely set for each subject on the basis of the 

result of the preliminary experiment.  

The learning function GLU (Fig. 2) calculates the parameter 

W of the pattern recognition function from the training data 

set. In the pattern recognition phase, we employ a three-layer 

feed-forward neural network (ANN) for the purpose of 

classification. In the same manner as that shown in Fig. 1, the 

parameter W is transmitted to the pattern recognition phase, 

and users are then able to discriminate motions. 

Training data is generated by self-organized clustering; 

therefore, users are unaware of the type of feature pattern 

assigned to each motion in the training data. To solve this 

problem, we visually display the feature patterns to users, who 

can then train themselves to match their EMG patterns to 

those of the training data. 

III. EXPERIMENT 

In order to verify the effectiveness of the proposed method, 

we carried out the following experiments. We compared the 

discrimination rate obtained by using the proposed method to 

that obtained by using the conventional method.  

A. Experimental Setup 

In the experiments, subjects discriminated eight forearm 

motions using both the conventional and the proposed 

methods. One healthy female (Subject A) and three healthy 

males (Subject B, D, and E), all in their twenties, participated 

as subjects. The target motions are the eight forearm motions 

shown in Fig. 4. The wrist motions are flexion, extension, 

radial flexion, and ulnar flexion. The hand motions are grasp, 

open, pinching, and 4-5th finger flexion. EMG signals are 

measured on three different muscles of the left forearm during 

the motions. The area of the amputation stump is narrow; 

hence, it is not possible to place many sensors on it. Therefore, 

we try to discriminate many motions by using a minimum 

number of sensors. In this experiment, we set EMG sensors to 

the flexor carpi ulnaris muscle, extensor carpi ulnaris muscle, 

and flexor pollicis longus muscle (Fig. 5). These muscles are 

used during the target motions. The sampling rate is 1600 Hz. 

The total dimensionality of the feature vector is 51, 1 

amplitude and 16 spectrums in each sensor. We use a data 

glove (Immersion Corp, Cyber Glove) to measure 18 joint 

angles of the hand and fingers, and the sampling rate is 50 Hz. 

Initially, the subjects discriminated motions using the 

conventional method. They sequentially taught motions to the 

classifier using a keyboard. The combinations of motion labels 

and feature vectors extracted during the motion formed the 

training data. Then, the motion discrimination tests were 

carried out. In each trial, the subjects maintained a posture of a 

particular motion for 3 s. Approximately 150 feature 

extractions were carried out. We performed the discrimination 

tests online; hence, this value is different for different trials. 

The number of correct discriminations divided by the total 

number of discriminations gives the discrimination rate. The 

subjects carried out three trials for each motion, and the 

average discrimination rate of the three trials was calculated.  

Then, the subjects generated training data using the proposed 

method. The training data were presented to the subjects and 

they trained themselves to match their feature patterns to those 

of the training data. A training period of 15 min and a motion 

discrimination test consisting of three trials for each motion 

constituted one set; subjects carried out four sets of tests. The 

parameters of the ANN are as follows. The number of hidden 

layers was 55; number of output layers, 8; and the learning rate, 

0.05. Learning continued until the error fell below 0.01 or for 

30000 learning steps. 
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05: Radial flex.  06: Ulnar flex.  07: Pinching  

08: 4-5th finger flex.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Average discrimination rate [%] 

Subject Conventional method Proposed method 

A 58.60 63.84 

B 52.67 56.79 

D 51.07 68.21 

E 24.97 56.88 

 

B. Experimental Result 

We compared the differences in the discrimination rates 

obtained by the proposed and conventional methods. Fig. 6 

shows the average discrimination rate for each motion of each 

subject. The result of the conventional method is the average 

value of three trials, whereas that of the proposed method is 

the highest rate obtained among the four sets for each subject. 

As can be seen from these graphs, the discrimination rate for 

six motions for Subject A, B, and D and seven motions for 

Subject E is higher with the proposed method than with the 

conventional method. Therefore, the proposed method can be 

considered as effective for motion discrimination. We 

calculated the average discrimination rate for all eight motions 

(Table 1). The average discrimination rate of the proposed 

method was 5–30% higher than that of the conventional 

method in the case of all subjects. Subject E, in particular, was 

not familiar with motion discrimination using EMG signals, 

unlike the other subjects; however, even he was able to 

discriminate motions better using the proposed method. 

Nevertheless, the discrimination rate in his case was still lower 

than that of other skilled subjects. In this experiment, the 

training time was approximately 1 h, and thus, an unskilled 

user like Subject E is considered to require more training to 

effectively carry out motion discrimination.  

IV. CONCLUSION 

In this paper, we have proposed a method to discriminate 

motions stable from EMG signals by using self-organized 

clustering. In this method, we generate representative feature 

patterns from EMG signals and then assign user’s intended 

motions as class labels to each representative feature pattern; 

these constitute the training data. In an experiment to verify 

the effectiveness of our method, we compared the 

discrimination rate of the proposed and conventional methods. 

The discrimination rate of the former was 5–30% higher than 

that of the latter, and we verified that the former was effective 

for motion discrimination. The amplitude and frequency of 

EMG signals were employed as feature vectors in this research. 

However, the type of feature vector used for motion 

discrimination is important; therefore, we need to investigate 

the effectiveness of the proposed method using different types 

of feature vectors. 
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Table 1.  Subject’s eight forearm motions for discrimination.  

 

Fig. 6.  Difference between discrimination rates of the proposed and the 

conventional methods. 

Fig. 4.  Subject’s eight forearm motions for discrimination.  

 

Fig. 5.  Positions of surface electrodes.  
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0

20

40

60

80

100

ID01 ID02 ID03 ID04 ID05 ID06 ID07 ID08

D
is

cr
im

in
at

io
n

 

ra
te

[%
]

(d) Subject E

Conventional method Proposed method

CH. 1 CH. 2 CH. 3

2590


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

