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Abstract—Sleep spindles are one of the most important 

short-lasting rhythmic events occurring in the EEG during 

Non-Rapid Eye Movement sleep. Their accurate identification 

in a polysomnographic signal is essential for sleep professionals 

to help them mark Stage 2 sleep. Visual spindle scoring 

however is a tedious workload, as there are often a thousand 

spindles in an all-night recording. In this paper a novel 

approach for the automatic detection of sleep spindles based 

upon the Teager Energy Operator and wavelet packets has 

been presented. The Teager operator was found to accurately 

enhance periodic activity in epochs of the EEG containing 

spindles. The wavelet packet transform proved effective in 

accurately locating spindles in the time-frequency domain. The 

autocorrelation function of the resultant Teager signal and the 

wavelet packet energy ratio were used to identify epochs with 

spindles. These two features were integrated into a spindle 

detection algorithm which achieved an accuracy of 93.7%.  

I. INTRODUCTION 

LEEP spindles are rhythmic transients present in the 

electroencephalogram (EEG) during non-rapid eye 

movement (non-REM) sleep. As shown in Fig. 1, they are of 

sinusoidal nature, characterized by progressively increasing, 

then gradually decreasing amplitude, with frequencies 

ranging approximately from 11-16 Hz and a typical duration 

of 0.5-2.0 s [1]. The density of spindles is typically highest 

in stage 2 sleep and lower in stage 3. Spindle activity is 

always accompanied by some level of background EEG 

waveforms.  

 
Fig. 1.  An example of a sleep spindle in stage 2 sleep EEG 

 

Spindles are an important sleep micro-event as they are 

considered sleep maintaining events, blocking the transfer of 

sensory information into the cerebral cortex at the level of 

the thalamus. It is in this state of reduced sensory activation 

that sleep related brain processes occur. They are also 

essential for sleep stage classification as together with K-

complexes, they are hallmarks of stage 2 sleep. They also 

play an important role in understanding the effect of drugs 

on brain function, localization in the brain and memory. 

As typically there can be up to 1000 spindles in a full 
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night recording, visual analysis is time-consuming and 

tedious. Furthermore some spindles are hard to identify as 

they are borderline in frequency or duration, or 

superimposed on other waveforms. Automatic sleep spindle 

detection is hindered due to fluctuations in the frequency 

patterns and large inter-individual variability in spindle 

amplitudes. 

Spectral analysis based on the frequency spectrum and 

linear autoregressive models of the sleep EEG has been 

popular in the characterization of sleep spindles because of 

their specific frequency range of sleep spindles [2].  In 

recent years advanced time-frequency analysis tools like the 

Gabor transform and matching pursuit algorithm [3, 4] as 

well as subspace methods and higher order statistics [5, 6] 

have been applied to the sleep EEG to derive improved 

feature vectors for sleep spindles. 
  

II. FEATURE EXCTRACTION 

A. The Teager Energy Operator (TEO) 

The Teager operator is a versatile tool that measures the 

instantaneous changes in sinusoidal energy. It represents the 

energy of the input signal within a specific frequency band 

[9]. The Teager operator amplifies the discontinuities and 

sudden amplitude changes in the signal while the soft 

transitions between samples are reduced.   

In continuous time the TEO is defined as 
2

( ) ( )
[ ( )] ( )

ds t ds t
s t s t

dt dt
  

 
  

        (1) 

where ( )s t  is a continuous-time signal. If ( )s n is a discrete-

time, random signal the TEO can be approximated by 
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Epochs with spindles also have a residual background 

EEG component predominately in the delta range. Therefore 

the recorded EEG can be given by ( ) ( ) ( )x n s n v n   where 

( )s n  is the sleep spindle and ( )v n  is the residual delta EEG. 

The Teager energy of the recorded EEG [11] would thus be  

    [ ( )] [ ( )] [ ( )] 2 [ ( ) ( )]x n s n v n s n v n       (3) 
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is the cross-term energy of ( )s n and ( )v n . Assuming that 

both terms are uncorrelated, their cross-term energy will be 

zero, thus   

          { [ ( )]} { [ ( )]} { [ ( )]}E x n E s n E v n        (5) 

As there are less transitions in the background slow wave in 

which sleep spindles are generally found, the Teager energy 

of these non-spindle epochs will be less than that epochs 
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with the sharp transitions of sleep spindles. Therefore it can 

be assumed that { [ ( )]} { [ ( )]}E v n E s n  and thus 

         { [ ( )]} { [ ( )]}E x n E s n            (6) 

Feature vectors calculated from the Teager energy of the 

sleep EEG should thus provide efficient spindle detection 

capability after signal detrending. 

B. The Wavelet Packet Transform 

The wavelet transform is an efficient analytical tool that 

decomposes the signal into the time and frequency domain, 

which is increasingly being used in pattern recognition and 

signal classification in the EEG.  

The standard wavelet technique decomposes the 

frequency axis in dyadic intervals where the length of the 

bandwidth increases exponentially. Wavelet packet 

decomposition [7] generalizes the dyadic construction by 

decomposing the frequency axis into separate intervals of 

varying length, thus increasing signal analysis possibilities. 

 

Fig. 2: Decomposition tree in a wavelet packet 

A wavelet packet tree is recognized by the triplet index 

( , , )j k m  and represents level, frequency band, and time 

translation [8]. Fig. 2 above shows a two-level 

decomposition of the wavelet packet tree. 
,j k

 , is the space 

of the basis vectors defined for the node ,j k of the binary 

tree, for 0,1,...,j J and 0,1, ..., 2 1k j  where 

0
log 2n n J  , n is the signal dimensionality, 

0
n is the 

maximum level of signal decomposition, and J is the 

maximum decomposition level desired. 

In this paper, wavelet packet decomposition was 

performed with the cross data entropy algorithm (CDE) [8] 

to extract an efficient feature vector for use in the accurate 

detection of sleep spindles. The CDE uses the sum of 

coefficient energies in each class and at each node to 

decompose the signal and construct the relative entropy 

measure to provide a measure of discrepancy between 

different classes of data to reveal the bases of a wavelet 

packet that distinguish one class of data from another as 

shown in the Fig. 3. 

 

 

Fig. 3: Main stages of the CDE algorithm 

C. Autocorrelation Function (ACF) 

The autocorrelation function (ACF) is used to identify the 

periodicity in an observed signal which may be corrupted by 

additive background signals [10]. The autocorrelation of a 

function measures the similarity of a signal with a delayed 

version of itself, thus providing information about the 

periodicity of the signal. The normalized autocorrelation 

function is given by  
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where N is the total sampling number, x is the signal value, t 

is the time, τ is the shifted time, and r is the ACF value.   

As sleep spindles and their Teager energy are highly 

periodic, the autocorrelation function, normalized with 

respect to the value at the zero lag was applied to the Teager 

energy operator and its mean in each epoch calculated. The 

mean ACF of epochs with spindles will thus be higher than 

those with non-spindles. 

III. METHODS 

Sleep EEG data downloaded from the online Sleep-EDF 

database available in the Physiobank archive was used in 

this study. The recordings were obtained from Caucasians 

(21 - 35 years old) without any medication, containing 

horizontal EOG, submental EMG, FpzCz and PzOz EEG, 

each sampled at 100 Hz. They were obtained from subjects 

with mild difficulty falling asleep but were otherwise 

healthy, collected overnight in the hospital. The EEG data 

was examined by a neurologist with EEG fellowship training 

and 95 sleep spindles were marked in the selected segment. 

Then, the data was segmented into 1.28 second running 

windows with no overlap.  

A. Wavelet packet Ratio Energy 

The wavelet packet energy ratio (WPER) is defined as the 

ratio of energies in two dominant frequency bands in the 

wavelet packet domain. The CDE algorithm [7] was first 

used to identify the most discriminant bases (i.e., bases that 

can distinguish one class of data from another) from a 

wavelet packet dictionary. Applied to sleep analysis, these 

classes can identify transient events occurring in the sleep 

signal. To obtain wavelet packet coefficients, we then 

projected the segmented data onto wavelet packet bases in 

the selected bands. The signal energies in these bands were 

then obtained by summing the squared coefficients. Based 

on the frequency characteristics of sleep spindles, we 

investigated different bands and found the 9 to 12 Hz and 1 

to 4 Hz bands to be most discriminating. 

The WPER of the epochs of the sleep EEG signal was 

determined by calculating the ratio of energy of the 9 to 12 

Hz band over energy of 1 to 4 Hz in the wavelet packet 

domain. Each epoch of the data was first decomposed into a 

wavelet packet tree. The Daubechies-4 filter was found to 

give the best decomposition. Then, the sum energies of the 

above mentioned bands were calculated to obtain their ratio 

in each epoch.   
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B. Teager Energy Operator 

The Teager energy operator was applied to the whole 

marked sleep EEG recording. As shown in Fig. 4, given the 

nature of the TEO, the dominant frequency content of the 

resultant signal was not different from the original. The only 

variation was an increase in the periodic frequency 

components of the resultant TEO signal as visible in Fig. 4. 

Therefore the frequency bands under investigation for the 

identification of spindles were not altered. Given the ability 

of the TEO to amplify instantaneous changes in energy, the 

autocorrelation function of the resultant signal in each epoch 

was used to identify the presence of spindles in an epoch.  

 

 

Fig. 4: a) The frequency content of an EEG epoch with a marked spindle 

and b) The frequency content of an EEG epoch with a marked spindle after 

application of the Teager Energy Operator 

IV. RESULTS 

A. Wavelet packet Ratio Energy 

The WPER of epochs with sleep spindles was compared 

to that of adjacent epochs with no spindles. It was found that 

the WPER of a significant number of epochs with spindles 

was larger than that of adjacent epochs with no spindles. Fig. 

5 shows the WPER of a segment of EEG with a marked 

spindle and its adjoining non-spindle epochs. Note the sharp 

increase in WPER value in the epoch with the marked 

spindle. 

 

 

Fig. 5: a) A EEG segment with a marked spindle and b) the WPER in a 

segment of EEG 

Table 1 gives the maximum and mean value of the WPER 

in epochs with spindles and the adjacent non-spindle epochs. 

The mean WPER of spindle epochs is higher than that of 

non-spindle epochs. As shown in Table 1, 70% of the 

spindle epochs had a WPER greater than 0.54, whereas 70% 

of non-spindle epochs had WPER less than 0.588, indicating 

the potential spindle discriminating ability of the WPER. 

B. Teager Energy Operator 

On application of the TEO, the spindles in the sleep EEG 

were found to become more prominent as compared to the 

epochs with non-spindles as shown in Fig. 6. In the original 

sleep EEG, the amplitude of the marked spindle is lower 

than the rest of the signal, but after the TEO is applied, the 

spindle is amplified and become more prominent.  

 

 

Fig.6: a) A EEG segment with a marked spindle b) The Teager Energy 

Operator of the EEG with the marked spindle c) the ACF of the EEG 

segment after applying the TEO  

 

Fig.7: a) The autocorrelation function of the Teager Energy Operator of an 

epoch with a marked spindle b) the autocorrelation function of Teager 

Energy Operator of an adjacent epoch with a non-spindle 

TABLE I 

COMPARISON OF FEATURE VALUES OF SPINDLES AND NON-SPINDLES 

 WPER 
Teager mean 

autocorrelation  

   

Spindles    

Maximum 31.28 0.6438 

Mean 2.07 0.1782 

Median 1.05 0.16 

70%> 0.54 0.112 

   

Non-spindles   

Maximum 30.29 0.46 

Mean 0.945 0.100 

Median 0.282 0.0619 

70%< 0.588 0.126 
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As seen in Fig. 7, the autocorrelation function of the 

resultant TEO signal also shows substantially higher 

periodicity than that of the adjacent non-spindle epoch. The 

mean ACF of the spindle epochs after application of the 

Teager was also found to be higher than that of adjacent 

non-spindle epochs.   

Table 1 gives the maximum and mean value of the WPER 

and the mean ACF of the Teager energy in epochs with 

spindles and the adjacent non-spindle epochs. The mean and 

median ACF of the spindle epochs resulting from the TEO 

are significantly higher than that of non-spindle epochs, 

approximately twice the mean of the non-spindle epochs. 

Table 1 shows that 70% of the spindle epochs had an ACF 

of the resultant TEO signal higher than 0.112, whereas 70% 

of non-spindle epochs had an ACF less than 0.126, 

indicating that it can be used as a potential spindle 

discriminating feature. 

C. Automatic Spindle Detection 

 

 

Fig.8: a) A EEG segment with a marked spindle with adjacent non-spindles, 

b) The Teager Energy Operator of the EEG with the marked spindle, c) the 

WPER of the signal d) the mean ACF of the Teager Energy Operator  

Based on results obtained form the above analysis an 

automatic spindle detector was implemented. The inputs to 

the detector were the ACF of the Teager Energy Operator 

and the WPER each epoch of the signal. In each epoch the 

value of the WPER in each epoch was compared to that of 

the previous epoch to identify candidate spindle epochs. The 

WPER and mean ACF of the Teager of these candidate 

spindles were then compared to thresholds. The thresholds 

for the two parameters were determined from the first 10 

spindle epochs and the adjoining non-spindle epochs in the 

signal.  These thresholds were then used in a logic based 

spindle detector to test the overall signal. Of the 1519 

epochs, the detector correctly identified 89 of the 95 spindles 

present, resulting in an accuracy rate of 93.9%. Fig 8 shows 

one of the identified spindles and its WPER and mean ACF 

compared to the adjacent epochs. 

V. CONCLUSION 

In this paper a novel sleep spindle detector has been 

proposed based upon the Teager Energy Operator and 

Wavelet Packet Energy Ratio.  Initial experiments conducted 

to test these methods showed that TEO was effective in 

enhancing the periodicity introduced in the signal due to the 

presence of sleep spindles in background EEG. The mean 

ACF of the Teager together with the WPER proved to be an 

effective technique for the detecting sleep spindles present in 

the EEG. An automatic sleep spindle detector based upon 

these measures was found to have a true accuracy of 93.9%. 
Further work needs to be done to enhance the classification 

methodology utilized in the detector and improve its 

efficiency, as well as testing it on a wider dataset of spindles, 
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