
  

  

Abstract— This paper evaluates supervised and unsupervised 

adaptive schemes applied to online support vector machine 

(SVM) that classifies BCI data. Online SVM processes fresh 

samples as they come and update existing support vectors 

without referring to pervious samples. It is shown that the 

performance of online SVM is similar to that of the standard 

SVM, and both supervised and unsupervised schemes improve 

the classification hit rate.  

I. INTRODUCTION 

lectroencephalogram (EEG) is an electrical signal 

collected from scalp and represents brain activities. A 

pattern recognition based brain-computer interface (BCI) 

discriminates EEG patterns and produces pre-defined 

commands corresponding to the patterns, to accomplish 

individuals’ intentions in communicating with a computer. 

Due to subject’s brain conditions or environmental changes, 

EEG signals are non-stationary. This phenomenon 

necessitates adaptive schemes that modify BCI classification 

parameters during run-time  [1].  

In this regard, various methods of supervised and 

unsupervised adaptive schemes have been applied to BCI 

systems with LDA  [2] [3] or GMM  [4] classifiers, including 

Kalman filter based methods for online adaptation  [5] [6].  

A classifier is the core of a pattern recognition based BCI, 

and online training that involves modifying the classification 

criteria to cope with changes in signal patterns can be an 

option to build an adaptive BCI. For certain classifiers, such 

as support vector machine (SVM), the online training 

accommodates two crucial issues: updating online Training 

Data Set (TDS) with valid samples, and applying training 

during BCI operation. Updating TDS inserts fresh samples 

into TDS using supervised or unsupervised methods. This 

demands repeating training process during run-time. Using the 

whole TDS for run-time training is computationally expensive 

and cannot satisfy some real-time constraints. Hence, an 

online algorithm that uses merely fresh samples for the 

training process and in the meantime keeps the old trained 

patterns is required.  

This paper presents supervised and unsupervised adaptive 

schemes with the core of online SVM for a BCI system and 
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compares them with the non-adaptive scheme using both 

synthetic data and real BCI data. The rest of the paper is 

organized as follows. Section II introduces the online SVM. 

Adaptive schemes are presented in Section III. Section IV 

explains the experiments conducted to examine the 

performance of the adaptive schemes. Finally, Section V 

contains the conclusion. 

II. ONLINE SVM 

SVM is a kernel-based approach with a strong theoretical 

background, which has become a popular tool for machine 

learning tasks involving classification and regression. It has 

been successfully applied to many applications, ranging from 

face identification and text categorization, to bioinformatics 

and database mining. SVM has been developed in three 

stages. At first, it was introduced to construct a linear optimal 

hyperplane with the widest margin between two classes. Then, 

it was extended to an optimal hyperplane in a feature space 

induced by a kernel function that covers nonlinear boundaries 

between classes. Finally, it was equipped to address noisy data 

by allowing some samples violating the margin between 

classes  [7].  

For a two-class data set (x1, y1),…,(xn, yn), xiЄR
d
 and 

yiЄ{±1}, separating hyperplanes between two classes in a 

feature space mapped by φ(x) are defined as:  

RbRwbxw
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A unique hyperplane that yields the maximum margin of 

separation between two classes and tolerates misplaced 

samples with distance (ξi≥0) is constructed by solving the 

following quadratic programming (QP) problem: 
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The constant CЄ[0,∞] is an upper bound for samples that lie 

on the wrong side of the hyperplane. It works as a controlling 

parameter to avoid overfitting problem in classification by 

creating a trade-off between the capacity of the classifier and 

error in TDS. Given kernel K(xi,xj)=φ(xi).φ(xj) and weights 

w=∑αiφ(xi), a way to solve (2) is via its Lagrangian dual that 

has been simplified to find the multipliers αi:  
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The objective function in (3) slightly deviates from the 

standard formulation because it makes the coefficients αi 

positive when yi = +1 and negative when yi = −1. Solving (3) 

helps to construct optimal hyperplane (1) and build the 
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following decision function:  
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The above decision function addresses the feature space using 

support vectors (SVs), i.e., samples that make αi≠0. SVM has 

been very successful and widely used because it reliably 

delivers state-of-the-art classifier with minimal tweaking. 

Sequential minimal optimization (SMO) is one of the efficient 

numerical algorithms developed to solve (3). It works by 

making searches along the direction u starting from vector α, 

which yields a new vector α+λmu, with 

),(0)  ,   (arg  max  uuJm αφλλαλ ≤≤+=   (5) 

where ),( uαφ  is an upper bound that ensures the α+λmu is 

feasible and u is a random search direction that ∑k uk=0.   

It was observed that the direction search is much faster 

when its coefficients are mostly zero, hence, SMO uses search 

directions whose coefficients are all zero except for single +1 

and single -1. Practical implementations of SMO, such as 

LIBSVM  [9], rely on a small positive tolerance τ>0, to select 

a suitable pair (i,j), called ‘τ-violating pair’, such that αi<Bi, 

αj>Aj, and gi - gj>τ, where gk is the gradient of J(α) and 

defined as  
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Bordes et al.  [8] have developed an iterative 

implementation of SVM, called LASVM, which suits online 

applications. LASVM reorganizes SMO direction searches; as 

such it converges to the solution to (3). It is built by alternating 

two kinds of direction searches named PROCESS and 

REPROCESS. PROCESS involves at least one sample that is 

not already an SV, and potentially can change its multiplier 

(αi) so as to make it a new SV. This enables LASVM to update 

SVs with merely using fresh samples in TDS. REPROCESS 

involves two samples that already are SVs, and potentially can 

zero their multipliers to remove one or both of them from 

current SVs. LASVM, at first, initializes state variables, and 

then runs online iterations (i.e., PROCESS and REPROCESS) 

that sequentially visit all the randomly shuffled TDS samples 

(this may occur in epochs), and finally performs finishing step 

which is only useful when one limits the number of online 

iterations.  

LASVM handles gracefully noisy data, converges to 

solutions of the known SVM methods (e.g., LIBSVM  [9]), 

and brings the computational benefits and the flexibility of 

online learning algorithms. Experimental evidence indicates 

that LASVM matches the standard SVM in terms of accuracy 

after a single sequential pass over TDS  [8]. LASVM can be 

used in the online setup where one is given a continuous 

stream of fresh random samples. The online iterations process 

fresh samples as they come and update existing SVs without 

referring to pervious samples. This is called incremental 

training, and it is a vital requirement to implement the online 

training with huge data sets, such as BCI data.  

III. ADAPTIVE SCHEMES  

An adaptive scheme rebuilds the boundaries between 

classes during real-time operation. It updates TDS from fresh 

data (i.e., have not been used for training yet) and applies them 

for online training (i.e., LASVM online iterations) iteratively. 

An SVM can be initially trained (i.e., offline training) using 

pre-collected labeled data. However, supplying run-time TDS 

is a challenge. This can be conducted using supervised or 

unsupervised methods.  

Although adopting supervised methods, in which labeled 

data are used for training a classifier, can be a protected 

option, in real-time applications, it often either too expensive 

or entirely impossible. For instance, providing true label for 

continuous stream of BCI data is nearly impossible. However, 

to have a comparative evaluation, by using pre-collected data, 

we employed two supervised methods to generate TDS for 

online training. In the former, called SP1, we applied all the 

fresh data to train the classifier. The latter method, named 

SP2, uses the most misclassified samples to generate TDS. In 

this method, we first classified the fresh data and then selected 

samples that located further from their true classes. This 

method neglects misclassified samples that are placed close to 

the current boundary, and liberates the impact of marginal 

data that are probably mislabeled. The furthest samples from 

the boundary between the classes are defined as  

δ≤= )(arg  *

kk xfyk         (7) 

The threshold δ is chosen as the half of the maximum distance 

of the fresh samples from the boundary.  
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Figure 1 – Margins of SP2 and USP2 around a boundary between two classes 

 

Unsupervised methods employ data samples without true 

labels. In these methods, the fresh data along with their 

predicted labels are adopted to update TDS for online 

training. We again applied two unsupervised methods, named 

USP1 and USP2. USP1 employs all the fresh data along with 

their predicted labels (by the current classifier), while USP2 

conservatively chooses the samples that are closest to the 

current boundary. This prevents the classifier from sudden big 

changes during online training, because of lack of confidence 

to data labels. The closest samples to the boundary between 
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classes are defined as  

δ≤= )(arg  *

kxfk        (8) 

The threshold δ is chosen as the half of maximum distance of 

the fresh samples from the boundary. Figure 1 illustrates the 

margins of SP2 and USP2 around a boundary between two 

classes. 

IV. EXPERIMENTAL RESULTS     

As mentioned earlier, providing labels for BCI data in 

real-time is nearly impossible, hence, we used three sets of 

pre-collected BCI data as well as forty sets of synthesized data 

to compare the performance of four proposed adaptive 

schemes (i.e., SP1, SP2, UPS1, and USP2) with non-adaptive 

scheme. In all schemes, online SVM with same parameters 

(i.e., C=1 and γ=0.5) is adopted as the classifier.  

At each experiment, we divided a data set into m 

consecutive subsets, the first subset was used for offline 

training and the rest were used first for testing and then for 

online training. In non-adaptive scheme, the accuracy of 

classification over each subset (Acci
non-adaptive

) was calculated 

using the SVM trained by the first subset, while in adaptive 

scheme, the accuracy of classification over each subset 

(Acci
adaptive

) was calculated using the online SVM adapted 

(i.e., incrementally trained) by the pervious subset. 

Classification accuracy over each subset was computed by the 

rate of properly classified samples to all the samples in each 

subset. The impact of using adaptive scheme compared with 

non-adaptive scheme was quantified by  
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     (9) 

Its positive or negative value represents improvement or 

degradation of classification hit rate of the applied adaptive 

SVM, respectively.  

A. Synthetic Data  

The first experiment employed forty sets of synthetic data, 

which were designed in such a way that the boundary between 

the two classes changes smoothly with time. To evaluate the 

classification performance of the proposed adaptive schemes, 

each set was divided into eleven consecutive subsets, and the 

impact of adaptive SVM was individually calculated for each 

scheme using equation (9). Figures 2 and 3 depict the 

classification accuracy on two particular data sets, both 

showing remarkable improvements by the four adaptive 

schemes. Figure 4 illustrates the average impact of the four 

adaptive schemes over forty data sets. As can be seen, the 

adaptive schemes have improved classification accuracy by 

about 12%. 

B. BCI Data  

The second experiment employed the three sets of BCI data 

in “Data Set V” for the BCI Competition III. At first, we 

compared LASVM with LIBSVM in classification of the BCI 

data. Both used the same kernel and 2-fold cross validation 

method. The experimental results illustrated in Table 1 

indicate that LASVM in two epochs performs comparably to 

LIBSVM in terms of classification accuracy.  
 

Set LIBSVM LASVM (epochs=2)  

#1 85.46 % 84.38 % 

#2 77.96 % 77.14 % 

#3 77.23 % 79.52 % 
 

Table 1 – Cross-validation accuracy (%) of LIBSVM and LASVM applied on 

the three sets of BCI data 
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Figure 2 – Classification hit rate over eleven subsets of set three of synthetic 

data using the four adaptive plus the non-adaptive SVM 
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Figure 3 – Classification hit rate over eleven subsets of set nine of synthetic 

data using the four adaptive plus the non-adaptive SVM 
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Figure 4 - Average of impacts (%) yielded by applying adaptive schemes on 

40 sets of synthesized data 
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To evaluate the adaptive schemes, each data set was 

divided into ten consecutive subsets of equal size. The first 

subset was used for offline training, and the remaining subsets 

used for online training. Figures 5 and 6 depict the 

classification performance of the adaptive schemes as well as 

non-adaptive scheme over two data sets. As it is shown 

adaptive schemes improve the classification hit rate. Figure 7 

shows the average of accuracy improvement, calculated using 

equation (9), after applying adaptive schemes. As can be seen, 

both the supervised (i.e., SP1 and SP2) and the first 

unsupervised schemes (i.e., USP1) improve the accuracy, but 

the second unsupervised method (i.e., USP2) degrades the 

classification accuracy.   

V. CONCLUSION 

Experimental results show that the online SVM ( LASVM), 

which employs fresh samples only for online training without 

referring to pervious samples, significantly reduces the 

training time compared to the well-known SVM (LIBSVM) 

and produces similar classification accuracy. Moreover, the 

proposed adaptive schemes based on online SVM improve in 

general the classifcation hit rate on both the synthesized data 

and real BCI data.  
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Figure 5 – Results of adaptive schemes and non-adaptive scheme applied on 

the BCI data set 3 
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Figure 6 – Results of adaptive schemes and non-adaptive scheme applied on 

the BCI data set 1 
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Figure 7 – Average of impact (%) yielded by applying adaptive schemes on 3 

sets of BCI data  
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