
  

  

Abstract—Intra-cranial electroencephalograms (EEG) from 

two patients diagnosed with epilepsy are sampled at 1kHz, 

enabling analysis and feature extraction at frequency bands 

above the gamma range. This study focuses on the extraction of 

linear features (including autoregressive, autoregressive-moving 

average and Fourier coefficients) obtained at both low (below 

100Hz) and high (100-500Hz) bands of the signal spectrum. 

Comparisons of the performance of each feature are made 

based on a binary hypothesis test of statistical distributions 

from inter-ictal and pre-ictal epochs. Results are obtained from 

pre-ictal time periods as assessed by an expert epileptologist.     

I. INTRODUCTION 

EIZURE prediction based on intracranial EEG 

recordings of patients diagnosed with epilepsy has been 

studied in the context of linear features [1] as well as non-

linear time-series analysis [2,3]. Subsequently, feature 

extraction techniques emphasized comparisons of seizure 

precursors to non-ictal or baseline EEG time segments in the 

context of sensitivity and specificity, or probability of false 

positive and false negative detection [4]. Some of these 

techniques employed probabilistic neural networks [5], k-

nearest neighbors [6], and hypothesis testing [7].   

Epilepsy is characterized by a tendency for recurrent 

seizures. It is the second most common brain disorder after 

stroke. Currently about 3 million Americans and 40 million 

people worldwide (about 1% of population) suffer from 

epilepsy [8-10]. A great challenge of epilepsy treatment is 

the unpredictability of recurrent seizures. The purpose of this 

study is to pave our way in seizure prediction research. The 

framework proposed herein is designed to search for signal 

processing techniques that may be applied to EEG 

waveforms to optimally predict the occurrence of an 

epileptic seizure through online classification/monitoring 

algorithms. This research may subsequently lead to clinical 

investigations of the effects of timely therapeutic 

interventions to control/abort seizure occurrences. In 

particular, this study compares linear features obtained from 

both high (100-500Hz) and low (below 100Hz)  frequency 

bands of intracranial EEG recordings sampled at 1000Hz. 
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The feature set includes autoregressive (AR), autoregressive-

moving average (ARMA) and Fourier coefficients (FFT), 

while the selection criterion is based on a binary hypothesis 

test.  

II. METHODS   

A. Regions of Interest 

The intracranial EEG dataset from RWJ-UMDNJ contains 

continuous long-term (2 to 7 days) recordings from 

bilaterally implanted depth electrodes in the hippocampus 

and grid macroelectrodes on the temporal surface of 8 

patients. EEG recordings were acquired using a Stellate 

recording system with 1,000 Hz sampling rate. All EEG 

recordings were viewed by two independent 

neurophysiologists to determine the number and the type of 

recorded seizures, seizure onset and end times, and seizure 

onset zones.  

Two data sets were used, each from a different human 

subject. In addition, each data set contained two visually 

identifiable ictal events occurring after a long (greater than 3 

hour) inter-ictal period. Within these data sets, epochs of 50s 

duration were chosen with start times at roughly 2 and 10 

minutes pre-ictally. These pre-ictal epochs were chosen as 

the clearest 50s portion of the EEG at the times of interest. 

Also, inter-ictal epochs were chosen as the clearest 50s 

portion of the EEG furthest away from an ictal event 

(typically 1½ to 2 hours away). Furthermore, the “clarity” of 

the epochs was determined by excluding portions exhibiting 

artifacts and brief epileptiform activity (buzzes) as observed 

visually. This was done in order to minimize distortions in 

the analysis while also constraining the study to those 

features that are not readily visible to the eye. 

B. Preliminary Signal Processing 

Each segment or epoch (inter- and pre-ictal) is fifty 

seconds long. Before dividing the epochs into contiguous 

500ms windows, they are subjected to two separate 

treatments, each intended to prepare the segment for 

processing at the particular band of interest (2-100Hz or 

100-500Hz). Moreover, all filtering is accomplished using 

FIR Hamming windowing techniques [13]. In particular, for 

the low frequency band, the epoch is first low-pass filtered 

by a 200-width FIR with a -6dB cutoff frequency of 95Hz, 

then down-sampled to 200Hz. Next, 60Hz artifacts are 

attenuated by applying a 200-width band-stop filter with -

6dB cutoff at 58Hz and 62Hz. To avoid non-stationary drifts 

Feature Extraction of Linear Predictors at Spectral Bands of Interest   

Stathis S. Leondopulos, Wanpracha A. Chaovalitwongse, Evangelia Micheli-Tzanakou, Fellow, IEEE, 

Stephen Wong and Brenda Y. Wu. 

S

2612

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



  

or "trends" in the 500ms processing window, the EEG is 

further high-pass filtered using a 500-width FIR filter with -

6dB cutoff at 2.5Hz.  

For the high-frequency band, 60Hz artifacts in the EEGs 

are first filtered with a series of 240-width band-stop filters 

centered at 60Hz and harmonics thereof with -6dB cutoff at a 

7Hz distance from the centers. Next, to avoid redundancy 

with respect to the low-frequency band analysis, the EEGs 

are high-pass filtered with a 200-width FIR filter and -6dB 

cutoff at 95Hz.    

Each time series is normalized to lie within {-1,+1} in 

order to avoid distortions in the results due to changes in 

signal amplitude related to electrical disturbances and 

offsets.  

C. Feature Extraction 

AR and ARMA coefficients of order 10 as well as Fourier 

coefficients spaced at 2Hz are derived from each data 

window of each track using the Levinson-Durbin, Prony and 

Fast Fourier Transform algorithms respectively. 

Distributions of each feature for each track within a 

particular epoch are derived using 20-bin histograms. Next, 

considering the distribution of a particular feature in the 

inter-ictal epoch Fi and pre-ictal epoch Fp,  the probability of 

misclassification of a particular feature is then estimated 

from the epochs under consideration as 

pi
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.           (1) 

Subsequently, those features with the smallest 

misclassification probability are chosen as candidates of 

interest.   

D. Practical Computing Considerations 

Due to the potentially large number of feature/track 

permutations where this analysis is applicable, the algorithm 

minimizes the amount of required memory by processing 

484 permutations at a time and saving the distributions of 

only the best 22 (with smallest Pe). Then on a second run, the 

top 10 of those are chosen as candidates of interest. 

E. Cross-Validation 

To cross-validate the results, the two inter-ictal and pre-

ictal epochs were interchanged within each set of data. This 

produced four sets of data per subject, each from a particular 

contrived scenario. However, no contrived scenario across 

the two human subjects was considered due to the possible 

distortions introduced by changes in the wiring and electrical 

setup to accommodate each particular medical case. 

III. RESULTS 

Those features that show saliency on the same electrode 

channel over multiple contrived scenarios are ordered by the 

number of times they appear in the results (in parentheses).  

 

TABLE I 

LOW FREQUENCY FEATURES 

Patient 2 minutes pre-ictal 10 minutes pre-ictal 

A 

1
st
 pole coef. (28) 

2
nd

 pole coef. (15) 

2
nd

 AR coef.  (10) 

1
st
 AR coef.   (8) 

1
st
 pole coef. (26) 

2
nd

 pole coef. (12) 

2
nd

 AR coef.  (8) 

1
st
 AR coef.   (3) 

B 

1
st
 pole coef. (30) 

2
nd

 pole coef. (26) 

1
st
 AR coef.   (5) 

3
rd

 pole coef. (4) 

1
st
 pole coef. (36) 

2
nd

 pole coef. (22) 

1
st
 AR coef.   (6) 

78.4Hz component (1) 

 

The resulting measures are organized in tables dividing 

features according to the subject (patient A and B) and 

according to pre-ictal epoch (2 minutes and 10 minutes).  

 

TABLE II 

HIGH FREQUENCY FEATURES 

Patient 2 minutes pre-ictal 10 minutes pre-ictal 

A 

2
nd

 pole coef (11) 

2
nd

 AR coef   (9) 

1
st
 AR coef    (9) 

1
st
 pole coef  (8) 

9
th

 AR coef   (9) 

1
st
 AR coef   (7) 

2
nd

 pole coef (6) 

9
th

 pole coef  (5) 

B 

2
nd

 pole coef (35) 

3
rd

 pole coef  (30) 

1
st
 pole coef  (28) 

2
nd

 AR coef  (13) 

2
nd

 pole coef (49) 

3
rd

 pole coef (36) 

1
st
 pole coef (35) 

2
nd

 AR coef (14) 

 

 
Fig. 1 Distributions of the 2

nd
 pole coefficient as extracted 

from the high frequency band at 10 minutes pre-ictally 

for patient B. Probability of error (p) shown. 

The most prominent features from the low frequency band 

are the first and second pole coefficients of the ARMA 

model, appearing in both epochs (starting 2 and 10 min pre-

ictally). Also, there is a higher prominence of these features 

in the data from patient B. 
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Fig. 2 Distributions of the 9

th
 AR (LPC) coefficient as 

extracted from the high frequency band at 10 minutes 

pre-ictally for patient A. Probability of error (p) shown. 

For high frequency analysis, the 2
nd

 and 3
rd

 pole 

coefficients are ubiquitous over all scenarios and in both 

patient data sets. Moreover, as can be seen in Fig.1, the 

feature distributions of pre-ictal and inter-ictal do not 

overlap for patient B. 

IV. DISCUSSION   

Linear features including AR and ARMA model 

coefficients of order 10 as well as Fourier coefficients, have 

been shown to display some saliency when used to compare 

pre-ictal EEG recordings to inter-ictal EEG recordings for 

both low frequency (less than 100Hz) and high frequency 

(100-500Hz) bands. This indicates a possibility that these 

features may provide some robust discerning characteristics. 

However, using only two ictal events and two patients, there 

is not enough evidence statistically to suggest that these 

features are consistent across particular electrode channels 

for long periods of time. To investigate this possibility, the 

ARMA model coefficients should be extracted from larger 

volumes of EEG data including more patients and ictal 

events. 

From the high frequency band analysis, the 2
nd

 and 3
rd

 

pole coefficients seem compelling as a candidates for seizure 

prediction. Moreover, the consistency of these features 

across the two patient data sets encourages further study 

including pre-ictal epochs at earlier times before a seizure as 

well as a larger data set. Overall, the ARMA model 

coefficients seem to have the most successful discerning 

capabilities for both the low and high frequency bands, while 

the low error probabilities in the high frequency band (see 

Fig.1) present some intriguing results that require further 

investigation. 

APPENDIX A 

Histograms of error probabilities are shown for the top 10 

features of epochs starting at 2 and 10 minutes pre-ictally for 

patients A and B. For the low frequency band, results from 

both patients are shown. However, for the high frequency 

band, histograms for patient B are omitted because they are 

all zero at the resolutions used (see Fig.1).  

 

 
Fig. 3 Histogram of the probabilities of error of the top 

10 features as extracted from the low frequency band of 

the epoch starting at 2 minutes pre-ictally for patient A. 

 
Fig. 4 Histogram of the probabilities of error of the top 

10 features as extracted from the low frequency band of 

the epoch starting at 10 minutes pre-ictally for patient A. 
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Fig. 5 Histogram of the probabilities of error of the top 

10 features as extracted from the low frequency band of 

the epoch starting at 2 minutes pre-ictally for patient B. 

 

 
Fig. 6 Histogram of the probabilities of error of the top 

10 features as extracted from the low frequency band of 

the epoch starting at 10 minutes pre-ictally for patient B. 

 

The zero error probabilities of high frequency feature 

distributions for patient B suggest a high seperability for this 

particular case. This might be expected as the ICTAL events 

of this particular patient were associated with a more severe 

seizure as compared with patient A. Furthermore, this 

encourages further analysis at frequency bands above 100Hz 

with a larger, statistically significant number of patient 

studies. Also, this encourages analysis of earlier pre-ictal 

periods (earlier than 10 minutes) to determine how far back 

error probabilities remain low. 

 
Fig. 7 Histogram of the probabilities of error of the top 

10 features as extracted from the high frequency band of 

the epoch starting at 2 minutes pre-ictally for patient A. 

 

 
Fig. 8 Histogram of the probabilities of error of the top 

10 features as extracted from the high frequency band of 

the epoch starting at 10 minutes pre-ictally for patient A. 

APPENDIX B 

Autoregressive coefficients, also known as LPC 

coefficients can be derived from a particular time series 

 x
v

,                (2) 

a set of m data points. The LPC procedure determines a set 

of p+1 values defined by vector 

 a
v

                  (3) 

that solve the equation 

baX
v

v

=              (4) 

in a least squares sense, where  
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Moreover, an efficient algorithm for completing this task 

is known as the Levinson or Levinson-Durbin algorithm 

[11]. 

Given some impulse response h(n), the autoregressive 

moving average (ARMA) model defines an infinite impulse 

response (IIR) filter that has an impulse response that fits 

h(n) as closely as possible. Moreover, there are a number of 

methods available for building an ARMA model. One of 

these is the Prony method [12] that utilizes the Levinson-

Durbin algorithm to find the poles of the filter, then solves 

for the zeros using the method of least squares. 
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