
Classification of Respiratory Signals by Linear Analysis

Sergul Aydore, Ipek Sen, Yasemin P. Kahya, M. Kivanc Mihcak

Abstract— The aim of this study is the classification of
wheeze and non-wheeze epochs within respiratory sound signals
acquired from patients with asthma and COPD. Since a wheeze
signal, having a sinusoidal waveform, has a different behavior
in time and frequency domains from that of a non-wheeze
signal, the features selected for classification are kurtosis, Renyi
entropy, f50/ f90 ratio and mean-crossing irregularity. Upon
calculation of these features for each wheeze and non-wheeze
portion, the whole data scattered as two classes in four di-
mensional feature space is projected using Fisher Discriminant
Analysis (FDA) onto the single dimensional space that separates
the two classes best. Observing that the two classes are visually
well separated in this new space, Neyman-Pearson hypothesis
testing is applied. Finally, the correct classification rate is %95.1
for the training set, and leave-one-out approach pursuing the
above methodology yields a success rate of %93.5 for the test
set.

I. INTRODUCTION

Two main methods used in the diagnosis of respiratory

diseases are computerized imaging techniques and auscul-

tation, the latter being cheap, simple and patient-friendly.

In many respiratory disorders (e.g. pneumonia, emphysema,

bronchiectasis, COPD and asthma), adventitious sounds spe-

cial to the disorder are observed in the sound data, and this

generally provides invaluable information that can eliminate

the need for imaging techniques. However, the stethoscope

does not perform well within the frequency band where the

human ear is most sensitive and the sound data can not

be recorded with this method. Thus, this method highly

depends on the subjective evaluation of the physician and

it is impossible to make an objective quantification.

In order to make auscultation a more valuable diagnostic

tool, computerized methods have been applied more so in

recent studies. The first studies on this area are summarized

in [1] and [2]. The computerized auscultation and analysis

methods of respiratory sound signals can be summarized

as; capturing the respiratory sounds as analog signals via

a transducer (or an array of transducers), digitization after

preprocessing, and interpretation of the digitized data using

various analysis techniques in the computer environment.

In this study, a method has been developed for the detec-

tion of a wheeze signal (having a continuous and sinusoidal

waveform) which is a clinical indicator of obstructive respi-

ratory diseases (e.g. COPD, asthma) and is mostly observed

in acute asthma episodes. The method is intended to be a

solution to the detection problem of a wheeze, i.e. whether

it exists or not given a segment of recorded lung sound

signal. According to the performance of classification carried

out with the training data set, any segment chosen within

a recorded lung sound signal can be classified as wheeze

or non-wheeze within a certain (foretold) error margin.

Although this study considers the classification of wheeze

and non-wheeze signal portions, the main aim is the detection

of a wheeze. The existence of a wheeze and its characteristics

(e.g. main frequency component, or ratio of its time duration

to the total breath cycle) can be accepted an indicator of

the degree of the bronchial obstruction [3]. This relationship

should be especially emphasized since it reveals the impor-

tance of the detection (therefore classification) problem.

In this study, the features which are expected to be

distinctive have been extracted from the windows which

had been labeled by an expert after a visual inspection as

wheeze and non-wheeze. Then, supervised classification has

been applied in this feature space, and both training and

test errors have been calculated. In similar studies carried

previously by other researchers, artificial neural networks

were generally adopted; and as the features used, either the

original signal itself and its Fourier transform coefficients [4],

or power spectrum components [5-7], or, descriptive statisti-

cal features derived from wavelet transform coefficients [8]

have been employed. Moreover, there are some studies which

apply peak detection on time-frequency representations like

spectrogram or continuous wavelet transform to identify the

existence of a wheeze [9-12]. The features proposed in

this study are kurtosis, Renyi entropy and mean-crossing

irregularity calculated in the time domain, and f50/ f90 ratio

calculated in the frequency domain. After feature extraction,

the wheeze and non-wheeze portions can be considered

each as an element of one of the two vector sets in the

four-dimensional feature space. Fisher discriminant analysis

and Neyman Pearson hypothesis testing are applied for

classification and detection, and after the error rates have

been calculated for the training set, the test error has been

calculated for the same data set using leave-one-out method.

II. EXPERIMENTAL SETUP AND DATA

The data used in this study is selected from the data

base which were recorded by the 14-channel respiratory

sound data acquisition system [13] developed in the Bogazici

University Lung Sounds Laboratory. The system is composed

of 14 electret microphones (Sony ECM-44 BPT) attached

at the posterior chest wall, an analog amplifier-filter unit

(with a gain of 100 and pass band of 80-4000 Hz) which

processes the signal from the microphone, a data acquisition

card which digitalizes the processed signal and transmits it

to the personal computer (National Instruments DAQCard

- 6024E), a notebook with an interface identified in the

LabView media, and a Fleisch type pneumatachograph (Vali-

dyne CD379) that synchronizes signals with the flow cycle.
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Fig. 1. Histograms of Kurtosis Values
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Fig. 2. Histograms of Renyi Entropy
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Fig. 3. Histograms of f50/ f90 ratio
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Fig. 4. Histograms of number of mean crossing

The sampling frequency of lung signals is 9600 Hz and the

duration of one data acquisition session is 15 sec. More than

one data acquisition sessions of 15 sec are carried out with

each subject. The data in this study were taken from asthma

and COPD patients who were under treatment in the Istanbul

Yedikule Teaching Hospital for Chest Diseases and Thoracic

Surgery. Data from four male and three female subjects in the

age of 50± 17 were used. By visually inspecting the time-

expanded sound signals together with auditory confirmation,

an expert labeled the wheeze portions, and then labeled non-

wheeze portions that are at comparable lengths with wheezy

ones, within the same signal was made using the appropriate

15 sec sessions and appropriate channels of the 7 subjects. A

total of 246 wheeze and non-wheeze portions were thereby

labeled and used in this study.

III. METHODOLOGY

From distinctive properties of wheeze and non-wheeze

signals in time and frequency domains, four features are

defined for classification of wheeze and non-wheeze signals.

These features are calculated for each window which has

been labeled either as wheeze and non-wheeze. Thus, the

two classes can be considered as two vector sets with 246

elements in four-dimensional space. The line which separates

the two classes best when the four-dimensional vectors are

projected onto it is found by Fisher linear discriminant

method. Thus, the four-dimensional space is reduced to a

one-dimensional space. The training and test performances

are tested using the distribution of these projected values in

one dimension.

The detailed explanation about features, Fisher discrimi-

nant method and Neyman-Pearson Hypothesis test are given

in the following subsections.

A. Features

Kurtosis Kurtosis gives the degree of peakedness of a

probability distribution and is defined as k = E(X−µ)4

σ4 for

a random variable X . It is known that the kurtosis value of

the normal distribution is 3, whereas it is less than 3 for

sub-gaussian distributions (e.g. uniform distribution). Thus,
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Fig. 5. Histograms of projection values
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Fig. 6. ROC Curve for projection values

in practice estimated kurtosis can be used in order to measure

the similarity of a given empirical distribution to the normal

distribution.In this study, the kurtosis of the distributions

of the values of wheeze and non-wheeze windows in time

domain are calculated. The histograms of the kurtosis values

for both classes are given in Fig. 1. As it can be seen from

the figure, the kurtosis values are mostly distributed around

3 for non-wheeze signals and they are less than 3 for wheeze

signals. This result confirms the fact that a different behavior

is expected for the kurtosis of non-wheeze signals which

are expected to have the normal distribution as compared

to wheeze signals which are expected to have a uniform

distribution.

Renyi Entropy: Renyi entropy is the generalized Shannon

entropy which gives the degree of uncertainty in the system

and is defined as Hα(X) = 1
1−α log(∑n

i=1 pα
i ) for a given

random variable X . It can be considered as a measure

of the hidden information or uncertainty for signals and

uniformity for distributions. In this study, the distributions of

the time-domain values of wheeze and non-wheeze signals

are considered as probability mass functions and the Renyi

entropies of these functions are calculated. The histograms

of the Renyi entropy values when α = 2 for both classes are

given in Fig. 2. The figure is consistent with the expectation

that the wheeze signals have a distributions closer to the

uniform distributions compared to non-wheeze signals.

f50/ f90 ratio: f50 and f90 denote the frequencies where the

ratio of the area under the power spectral density function to

the total area is 50 % and 90 %, respectively. Ideally, i.e. for

an accurate estimation of power spectral density, since the

power spectral density is concentrated on a single frequency

for wheeze signals, f50 and f90 values are expected to be

close to each other. According to this expectation, the f50/ f90

ratio is supposed to be larger for wheeze signals than for

non-wheeze signals. The histograms of the f50/ f90 ratios for

both classes are given in Fig. 3. The figure confirms the

expectation that the f50/ f90 ratio is larger for wheeze signals.

Here, Welch method is used in order to estimate the power

spectral densities. The window length and the number of

Fourier Transform points are 256, overlapping ratio is % 50

and window type is Hamming.

Mean Crossing Irregularity: It is expected that there

should be a difference in the mean crossing behaviors of

waveforms of the wheeze and non-wheeze signals which

have regular and irregular oscillations, respectively. If the

interval between successive mean crossing indexes of the

signals is defined as a random variable, the deviation from

the mean value is expected to be larger for non-wheeze

signals than for wheeze signals. Mathematically, if X denotes

the random variable for the interval between two successive

mean crossing indices, the mean crossing irregularity is

defined as

√
Var(X)

E(X)
, i.e. the ratio of standard deviation of

this variable to its’ mean value. The histograms of the mean

crossing irregularities for both classes are given in Fig. 4.

As is expected, the irregularity of mean crossing values

are larger for non-wheeze signals and there is a significant

difference between the two classes in terms of mean crossing

irregularity.

B. Fisher Discriminant Analysis and Neyman Pearson Hy-

pothesis Testing

After the extraction of four features for each window from

both classes, Fisher discriminant analysis is applied in order

to separate the two classes in one-dimension.

Suppose we have n d-dimensional {x1,x2...xn} vectors

and n1 (n2) of them are in the subset D1 (D2) and labeled

as w1 (w2), respectively. If the dot product of these d-

dimensional vectors with w∈R
d is taken, we have yi = wT xi

(i ∈ 1,2, ...,n) scalars contained in Y1 or Y2 subspaces.

Here, n = 492, n1 = n2 = 246, d = 4 and w1 and w2 denote

wheeze and non-wheeze classes, respectively. Geometrically,

if ||w|| = 1, each yi is the projection of the corresponding

xi vector to the line in the direction of the vector w. Fisher

discriminant analysis finds the best w which separates two
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classes best when they are projected onto it. One of the sepa-

ration measures between the two classes of projection values

is the distance between the mean values of the classes. If the

class index is denoted as k, for k = {1,2}, the mean vector in

d-dimensional space is defined as mk = 1
nk

∑x∈Dk
x and the

mean of the projected values is defined as m̃k = 1
nk

∑y∈Yk
y =

wT mk. Thus, the distance which is desired to be maximized

turns out to be |m̃1−m̃2|= |wT (m1−m2)|. However, in order

to get a good separation between the projected classes, the

distance between the mean values needs to be normalized

according to the standard deviation of each class. If the

scattering of the projected values for each class is defined

as sk = ∑y∈Yk
(y− m̃k)

2, then the cost function desired to be

maximized becomes J(w) = |m̃1−m̃2|2
s̃2
1+s̃2

2

. In order to write J(.)

as an explicit function of w, Sk = ∑x∈Dk
(x−mk)(x−mk)

T ,

SW = S1 + S2 and SB = (m1 − m2)(m1 − m2)
T scattering

matrices are defined. After trivial constructions, the cost

function reduces to J(w) = wT SBw

wT SW w
[14]. The histograms of

the projected values of x vectors onto w vector are given in

Fig. 5. For any selected value of the threshold (τ), Neyman

Pearson hypothesis test can be written as; (i ∈ 1,2, ...,n)

H0 : yi ∈ D2 if yi < τ
H1 : yi ∈ D1 if yi > τ

. Here, H0 hypothesis means that the given window contains

a wheeze and H1 hypothesis means that it is a non-wheeze

window. For all possible values of τ , the ROC curve which

shows the probability of false alarm PF(τ) = P(yi > τ|H0) vs

the probability of miss PM(τ) = P(yi < τ|H1) in logarithmic

axes is given in Fig. 6. The best value for the threshold (τ∗)

is selected as the value where the total probability of error

PT (τ) = P(yi > τ|H0)+P(yi < τ|H1) is minimized.

After evaluating success over the training data set, the

classification performance for a test data set should also be

evaluated for completeness. Since the data set is not large,

leave-one-out approach is adopted for this study. Each time,

one member out of 492 is left out and classified according to

the new optimum threshold τ∗i which is calculated over the

remaining data set for i = {1,2, · · · ,492}. Next, the ratio of

misclassified samples to the total number of data gives the

test error rate.

IV. RESULTS AND DISCUSSION

For the training data set, the number of misses, i.e. the

number of wheeze windows which are detected as non-

wheeze, is 18 among 246 windows and the number of false

alarms, i.e. the number of non-wheeze windows which are

detected as wheeze is 6 among 246 windows for τ∗. Hence,

the percentage error rate for the training set is found as

24/492 = 4.88%. For the test data set, the number of misses

is counted as 20 and the number of false alarm as 12. Thus,

the percentage error rate for the test set is calculated as

32/492 = 6.5%. To state the results in terms of percentage

success rates, the training success is 95.1% and the test

success is 93.5%.

V. CONCLUSION

In this study, the wheeze and non-wheeze windows in the

respiratory sound signals acquired from asthma and COPD

patients are classified by using Fisher discriminant method

and detected by using Neyman-Pearson hypothesis testing

after extraction of features. Considering the studies in [4-

12], the rates can be accepted high, although the proposed

methodology is simpler to implement. From these results, it

can be concluded that the features defined and the proposed

method are promising for using on a more extensive data

set. The classification and detection performance might be

increased by utilizing non-linear methods and adding new

features.
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