
  

  

Abstract— Hemorrhagic shock (HS) potentially impacts the 

chance of survival in most traumatic injuries. Thus, it is highly 

desirable to maximize the survival rate in cases of blood loss by 

predicting the occurrence of hemorrhagic shock with 

biomedical signals. Since analyzing one physiological signal may 

not enough to accurately predict blood loss severity, two types 

of physiological signals - Electrocardiography (ECG) and 

Transcranial Doppler (TCD) - are used to discover the degree 

of severity. In this study, these degrees are classified as mild, 

moderate and severe, and also severe and non-severe. The data 

for this study were generated using the human simulated model 

of hemorrhage, which is called lower body negative pressure 

(LBNP). The analysis is done by applying discrete wavelet 

transformation (DWT). The wavelet-based features are defined 

using the detail and approximate coefficients and machine 

learning algorithms are used for classification. The objective of 

this study is to evaluate the improvement when analyzing ECG 

and TCD physiological signals together to classify the severity 

of blood loss. The results of this study show a prediction 

accuracy of 85.9% achieved by support vector machine in 

identifying severe/non-severe states. 

I. INTRODUCTION 

EMORRHAGE is the most severe factor  in traumatic 

injuries and their critical care. Since hemorrhage can 

cause inadequate tissue perfusion and organ damage, a 

condition termed hemorrhage shock (HS) relies heavily on 

the early diagnosis and treatment [1, 2]. Classifying the 

degree of severity of blood loss is vital in ensuring prompt 

treatment and a higher survival rate. Prompt detection and 
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treatment of hemorrhagic injuries is also essential in the 

military field and for civilian trauma patients. Therefore, it is 

highly desirable to evaluate the severity of blood loss and 

predict the future occurrence of hemorrhagic shock (HS) by 

processing biomedical signals available in clinical settings.  

Biological time series recognition analysis has been 

studied for many years to obtain significant information 

associated with diseases. For example, Electrocardiography 

(ECG) analysis has been shown to provide abnormal heart 

function information about autonomic control of the 

cardiovascular system, and so can explain a variety of 

cardiac dysfunctions [3].  By analyzing the physiological 

signal, an early diagnosis may be obtained. Even though, 

ECG combined with blood pressure (BP) is useful for 

analyzing cardiac activity, it may be insufficient for early 

estimation of hemorrhagic shock [4, 5, 6]. Incorporating 

other physiological signals may therefore further improve 

such estimations.  

Transcranial Doppler (TCD) ultrasound is a non-invasive 

medical monitoring method that is clinically used to examine 

the circulation of blood inside the human brain. During 

typical TCD monitoring, ultrasound waves, which are 

transmitted through the tissues inside the skull, are reflected 

by the red blood cells moving along the blood vessels. 

Detection of these echoes allows estimation of blood flow. 

The real-time use of TCD monitoring can also be used to 

observe and record the blood flow inside the brain during a 

number of important surgical procedures [14, 15].  

Therefore, in this study multiple physiological signals such 

as ECG and TCD signals are used and compared for their 

ability to further improve estimation of blood loss severity.  

Many physiological time series are non-stationary, as they 

show very irregular and complex time-varying statistical 

patterns. Simple statistics based on mean and standard 

deviation quantitative analysis of physiological signals is 

used to provide knowledge of physiological significance.  

However, standard deviation alone may not provide an 

appropriate characterization of the rapid changes in a 

physiological system. For the purpose of characterizing 

fluctuation of the signal, power spectral density (PSD) [3, 

19] is commonly used. PSD depends on techniques that 

provide information on the frequency components present in 

the signal. However, it does not provide the locality of these 

frequency changing contents. Because of this limitation, PSD 

may not appropriate to analyze non-stationary signals; a 
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challenge, considering that most physiological signals are 

non-stationary.  

In order to overcome those disadvantages, time-frequency 

analysis based on wavelet transformation has been utilized 

[16] for this study. Since wavelet transformation provides 

desirable characteristics in time-frequency signal processing 

[8, 11], it is suitable for analyzing the time-varying 

characteristics of non-stationary signals such as ECG.  

The objective of this study was to classify the severity of 

hemorrhage from patterns in physiological signals using 

discrete wavelet transformation (DWT) and machine 

learning. The performance of the wavelet method was tested 

using multiple physiological signals such as ECG and TCD 

signals from a model of hemorrhage in healthy conscious 

humans, called lower body negative pressure (LBNP). 

Machine learning (ML) algorithms were then applied to 

predict hemorrhage states i.e., mild, moderate and severe, 

and non severe and severe.  

LBNP has proven to be a useful tool for simulating the 

early phase of hemorrhage in humans [12]. As such, this 

study uses physiological data generated from LBNP 

experiments.  

II. METHODS 

A. Description of Dataset 

Lower body negative pressure (LBNP) is widely used as a 

human demonstration model for studying acute hemorrhage 

analysis. A previous study [17] states that LBNP is a useful 

model to simulate acute hemorrhage in humans, since both 

induce similar physiological responses. Comparisons 

between physiological responses to LBNP and blood loss 

have demonstrated that some amount of blood loss and 

LBNP cause similar physiological reactions.  

The LBNP dataset is comprised of forty subjects and was 

provided by the U.S. Army Institute of Surgical Research 

(USAISR) under a protocol approved by the Institutional 

Review Boards of both the USAISR and Virginia 

Commonwealth University.   

Each test subject’s lower body was placed inside the 

LBNP chamber and sealed at the iliac crest.  The LBNP 

protocol consisted of a 5-min rest period (0 mm Hg) 

followed by 5 min of chamber decompression to -15, -30, -

45, and -60 mm Hg and additional increments of -10 mm Hg 

every 5 minutes until the onset of cardiovascular collapse 

defined by one or a combination of the following criteria: a) 

a precipitous decrease in systolic blood pressure (SBP) ( > 

15 mm Hg); b) a sudden decrease in pulse rate ( > 15 

beats/min); progressive diminution of SBP < 70 mm Hg; 

and/or d) voluntary subject termination due to onset of pre-

syncopal symptoms such as gray-out, sweating, nausea, or 

dizziness.  Continuous ECG was recorded. Beat-by-beat 

systolic (SBP) and diastolic (DBP) blood pressures were 

measured non-invasively using an infrared finger 

photoplethysmograph (Finometer® Blood Pressure Monitor, 

TNO-TPD Biomedical Instrumentation, Amsterdam, The 

Netherlands). Also, a real measure of cerebral blood flow 

signal, TCD, was recorded.  

The electrical signals used in our dataset were both 

sampled at 500 per second (i.e., 500Hz). In order to aid 

understanding of the data analysis process, the overall 

procedure is described in Figure 1. 

 

B. Discrete Wavelet Transformation (DWT) 

This section describes the pre-processing procedure, 

including signal segmentation and filtering, as well as DWT 

analysis. First, each physiological signal is segmented based 

on the LBNP stages (i.e., 5-min stages) to divide stages from 

baseline to collapse. Filtering is then applied to remove 

unwanted frequencies. In order to remove a specific 

frequency associated with power line (60 Hz), a notch filter 

centered at this frequency is employed [13], and then a band-

pass filter between 1Hz and 62 Hz is applied. The wavelet 

transform is suitable for analyzing non-stationary signals to 

extract time-frequency information from the signals with 

rapid fluctuation. For this study, discrete wavelet 

transformation (DWT) is directly applied to physiological 

signals. DWT decomposes a signal at different levels with 

different frequencies by calculating the correlations of the 

signal with a mother wavelet. A series of high pass filters is 

applied to the signal to analyze the high frequencies, and low 

pass filters are used to analyze the low frequencies [9, 11, 

18]. Since there is no absolute way to choose a mother 

wavelet, the choice of the wavelet is heavily based on the 

shape of the signal itself. In this study, the Daubechies family 

is chosen considering their similarity to the physiological 

signal. In particular, level six of Daubechies 4 (db4) and 

 
 
Fig. 1.  A schematic diagram for the entire process. 
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level eight of db4 are tested for ECG and TCD signal.  Detail 

and approximation coefficients are used for further analysis. 

C. Feature Extraction 

Once DWT is applied to the physiological signals, the 

effect of the coefficients from DWT among the stages, from 

baseline to collapse stage, is examined by measuring the sum 

of each coefficient to investigate whether the energy of each 

stage is significantly difference from the other level 

coefficients. Then the following features are calculated:  
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where j

i
d  is the detail coefficient at 

level ),8,,2,1 and 6,,2,1( LL == jjj and 
ia is the approximation 

coefficient. 
l

ε  is relative entropy at approximation 

coefficient and AD j  and indicate energy at level j and 

approximation coefficient respectively. The coefficients are 

used to calculate the median of each level and approximation 

coefficient using a window size of twenty (
j

1
κ ); the point 

right before the median of each level and approximation 

coefficient using window size of twenty (
j

2
κ ); and the point 

right after median of each level and approximation 

coefficient using window size of twenty (
j

3
κ ). 

For the TCD signal, the following features are calculated 

with level six and eight decomposition of DWT. 
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 where j
p is calculated based on detail coefficient at each 

level j . 

D. Classification using Machine learning (ML) 

The task of classification using machine learning (ML) is 

to predict the severity class of any given case using a model 

with ten-fold cross validation. In this study, ML algorithms 

are used to generate a classification model to predict the 

LBNP severity based only on significant features. Three 

machine learning algorithms are tested and compared: 

Support Vector Machines (SVMs), AdaBoost, and C4.5. 

Each machine learning method is implemented using 10-fold 

cross validation.  

In order to address the significance of using integrated 

physiological signals, two classifications are performed and 

compared: 1) using only features defined based on TCD 

signals, 2) using features defined based on ECG and TCD 

signals.  

Each classification is performed to predict whether the 

condition is mild, moderate or severe, as well as severe or 

non-severe. Baseline information is not included in the 

classification task since this information cannot be known in 

civilian patients.  Precision and recall were also calculated to 

validate the model.  

III. RESULTS 

This section first presents the results of ANOVA analysis 

in extracting the most significance features for prediction of 

blood loss severity. Then the results of classification are 

described.  

When investigating the energy difference among the 

stages with the DWT coefficients, we found that ECG 

showed much energy difference at the approximation 

coefficient and a slight change of detail coefficient among 

the stages, from the baseline to collapse stage, using level six 

decompositions. For this study, only the approximation 

coefficient is used for further classification. The TCD signal 

showed significant change in detail coefficients rather than 

approximation coefficient when using level eight 

decompositions. 

According to ANOVA analysis to obtain the most 

significant features to identify the severity of blood loss, 

relative entropy of ECG (p value <0.0001), energy of ECG 

(p value <0.0001), and right before median of ECG (p value 

< 0.0001) are significant. In addition, the sum of squares of 

level 1 of TCD (p value=0.0051), the sum of squares at level 

7  of TCD (p value=0.0008), the sum of square at level 8  of 

TCD (p value <0.0001), entropy at level 5 of TCD (p value 

<0.0001), entropy at level 6 of TCD (p value <0.0001), 

entropy at level 8 of TCD (p value <0.0001), variance at 

level 6 of TCD (p value <0.0001), and variance at level 8 (p 

value <0.0001) are selected as significant features for TCD 

signal.  

Table I and Table II show the classification results with 

two classes (severe and non-severe) and three classes (mild, 

moderate and severe). As SVM obtained the highest 

accuracy among the machine learning techniques, only the 

SVM results are presented here. 

  

Table I presents the classification results using three classes. 

A total of 184 samples are used for classification: 60 samples 

for mild, 50 for moderate and 74 for severe. In addition, true 

positive (TP) of mild case was 55 out of 60 (91.6%),  true 

positive of moderate cases was 26 out of 50 (52%) cases, 

and true positive of severe cases was 57 out of 74 (77%). 

TABLE I 

CLASSIFICATION RESULT WITH THREE CLASSES 

 Accuracy Avg. Precision Avg. Recall 

TCD only 70 % 67.4% 67.3% 

ECG and TCD 75.5% 73.2% 73.3% 
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Table II presents the classification results using two 

classes.  For this classification, mild and moderate cases are 

combined as non-severe cases. A total of 183 samples are 

used: 110 non-severe and 74 severe. In addition, true 

positive (TP) of non-severe case was 100 out of 110 (90.9%) 

and true positive of severe cases was 55 out of 74 (74.3%) 

cases. 

IV. DISCUSSION 

This study identifies the severity of blood loss using 

wavelet based features that can help discover hidden 

underlying patterns in physiological signals. In addition, 

applying a multi-physiological signals approach improves 

the accuracy and reliability of the volume loss prediction 

with three classes (mild, moderate, and severe). In other 

words, analyzing ECG and TCD signals together provides 

slightly improved performance over the use of TCD alone 

when predicting blood loss severity. Also, this study shows 

that approximate coefficient of DWT with ECG which is 

described the correlation with very low frequency of the 

signal may express the valuable characteristic of hidden 

knowledge. 

V. CONCLUSION 

This study shows that the most accurate prediction of 

hemorrhage severity (mild, moderate, and severe/ severe and 

non-severe) can be achieved when ECG and TCD are used 

together rather than when TCD is used alone.  The multi-

physiological signal wavelet-based method is capable of 

promptly determining the degree of blood loss, which may 

provide a useful means for real-time remote triage and 

decision making.   

As a continuation of this work, more physiological signals 

will be used to predict the severity of blood loss, and more 

features will be defined to extract hidden patterns via 

wavelet transformation.  
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