
Abstract—This work presents a multi-channel patient-
independent neonatal seizure detection system based on the 
SVM classifier. Several post-processing steps are proposed to 
increase temporal precision and robustness of the system and 
their influence on performance is shown. The SVM-based 
system is evaluated on a large clinical dataset using several 
epoch-based and event based metrics and curves of 
performance are reported. Additionally, a new metric to 
measure the average duration of a false detection is proposed 
to accompany the event-based metrics.

I. INTRODUCTION

EIZURES are more common in the newborn period than 
at any other time of life. Newborn seizures can be 

caused by problems such as lack of oxygen around the time 
of birth, haemorrhage, meningitis, infection and stroke. 
Failure to detect seizures and the resulting lack of treatment 
can result in brain damage and in severe cases, death. 
Newborn seizures are notoriously difficult to detect 
clinically as signs may be very subtle or even absent. Multi-
channel Electroencephalography (EEG), a technique that 
measures the electrical activity of the brain, is the most 
accurate test available for the detection of all seizures. Many 
neonatal intensive care units have access to EEG monitoring 
but few have the expertise available to accurately interpret 
the results. The availability of automated neonatal seizure 
detection algorithms may help provide a solution to this 
urgent clinical need.

Numerous approaches have been proposed to quantify 
and identify the increase in periodicity of the EEG during 
neonatal seizures. Spectrum analysis [1], autocorrelation 
based metrics [2] and singular value decomposition [3] were 
tested in an independent study [4], with results proving 
unsatisfactory for clinical implementation. A method to 
mimic a human observer using a detector designed to 
identify spike-train like seizures and a second detector 
looking for oscillatory seizures has been proposed in [5].

Instead of using a set of heuristic rules and thresholds, 
several approaches rely on a usage of a classifier – a data-
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driven set of thresholds automatically trained on the data. A 
system based on a multilayer perceptron to classify neonatal 
EEG into one of 6 background states or 2 seizure states has 
been proposed in [6].  

Recent work on statistical machine learning has shown the 
advantages of discriminative classifiers such as Support 
Vector Machines (SVM) [7] in a range of applications, 
including seizure detection. SVM was initially developed as 
a binary classifier and thus it is very well suited to binary 
classification problems such as seizure detection. A patient 
dependent neonatal seizure detection system based on SVMs 
has been proposed in [8] but has not been tested on a multi-
patient dataset. In [9], a one-class SVM methodology was 
used for seizure detection from intracranial EEG.  

The metrics used to report the results of seizure detection 
systems vary from publication to publication. Some papers 
only report clinically motivated event-based metrics; others 
only report epoch-based metrics. Apart from different terms 
used to name the same metrics across the literature, it is 
almost impossible to compare reported systems when a pair 
of metric values is reported rather than a complete curve of 
performance of the systems. 

In this work a multi-channel patient-independent neonatal 
seizure detection system was designed, based on a SVM 
classifier and evaluated on a large clinical dataset using 
several epoch-based and event-based metrics. Varying the 
level of confidence of the system decisions, the curves of 
performance are reported. Additionally, a new metric is 
proposed to accompany the event-based metrics.  

II. SVM-BASED SEIZURE DETECTION SYSTEM

A. Features 
The EEG is down-sampled from 256Hz to 32Hz with an 

anti-aliasing filter set at 16Hz. Prior to feature extraction, the 
EEG is split into 8s epochs with 50% overlap between 
epochs. The features used in this work are listed in Table I. 
They are extracted for each epoch and have been shown to 
be useful for seizure detection in a number of papers 
[1][6][10][11].  

In total, 55 features are extracted. Despite the fact that 
some features may be redundant, preliminary experiments 
confirmed that the SVM is not very sensitive to their 
presence [12]. Initial tests showed that the best results are 
obtained using the extracted features altogether and no 
feature selection techniques tested gave better results (the 
feature selection results are beyond the scope of this paper).  
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B. SVM classifier 
The SVM [7] is a discriminative model classification 

technique that mainly relies on two assumptions. First, 
transforming data into a high-dimensional space may 
convert complex classification problems (with complex 
decision surfaces) into simpler problems that can use linear 
discriminant functions. Second, SVMs are based on using 
only those training patterns that are near the decision 
surface assuming they provide the most useful information 
for classification.

In the training stage, seizure and non-seizure epochs are 
labelled -1 and +1, respectively, for each channel. The 
features extracted from each epoch are then fed to train one 
SVM classifier. The training data for the SVM classifier are 
firstly normalized anisotropically by subtracting the mean 
and dividing by standard deviation to assure 
commensurability of various features and the obtained 
normalizing template is then applied to the testing data. In 
the experiments we use the Gaussian kernel. 5-fold cross-
validation on training data is applied to search for the 
optimal Gaussian kernel parameter and generalization 
parameters C. Once the optimal pair of parameters is found, 
it is used to train the final model on all the training data.  

In the testing stage, the obtained classifier is applied 
separately to each channel and the decisions are post-
processed and fused as described below.  

C. Multi-Channel Fusion and Decision Post-Processing 
Every epoch is represented by a feature vector in each 

channel. The output of the SVM classifier is computed for 
each feature vector. These outputs are then converted to 
posterior probabilities with a sigmoid function. For 
unbalanced problems, decisions made with a threshold 
given by the sigmoid function were shown to be 
significantly better than those obtained with the original 
threshold of zero applied to the distances [15]. The 
parameters of the sigmoid function were estimated on the 
training dataset as described in [15].  

A linear moving average filter (MAF) is applied to the 
time sequence of probabilities in each channel as an optimal 
filter to reduce random noise, while retaining a sharp step 
response, thus helping to avoid too frequently alternating 

labels. The averaged value is then compared to the threshold 
of 0.5 (i.e. equal confidence/priors for the seizure and non-
seizure classes) and a binary decision is taken. To obtain the 
curve of performance the final probability is compared to a 
set of values in the interval range [0 1]. Then the procedure 
that is used in annotating the data is employed: if there is a 
seizure at least in one channel the whole epoch is marked as 
a seizure, otherwise it is denoted as a non-seizure.  

Additionally, the “collar” technique used in speech 
processing applications is applied here. Every seizure 
decision is extended from either side by some amount of 
time to compensate for possible difficulties in detecting pre-
seizure and post-seizure parts.  

III. PERFORMANCE MEASUREMENTS

The metrics designed for the seizure detection task can be 
divided into epoch-based and event-based metrics.  

A. Epoch-based Metrics 
The epoch-based metrics can be viewed as application 

irrelevant metrics – every epoch is considered as a separate 
testing example regardless of the importance that its 
(in)correct classification has for a particular task. In a binary 
decision problem such as the seizure detection, the decision 
made by the classifier can be represented in a structure 
known as a confusion matrix or contingency table. The 
confusion matrix has four categories: true positives (TP) are 
epochs correctly labelled as seizures; false positives (FP)
refer to epochs incorrectly labelled as seizure; true negatives 
(TN) correspond to correctly labelled non-seizure epochs and 
finally, false negatives (FN) refer to epochs incorrectly 
labelled as non-seizure.  

Epoch-based metrics for seizure detection come from two 
theories: signal detection theory and information retrieval 
theory. From the former, Sensitivity and Specificity are 
reported in most papers [1][6] defined as TP/(TP+FN) and 
TN/(TN+FP), i.e. the accuracy of each class separately. 
When evaluating binary decision problems it is very difficult 
to compare performance of various systems when only a pair 
of values (Sensitivity and Specificity) is reported. It is 
recommended [13] to use Receiver Operator Characteristic
(ROC) curves, which show how the Sensitivity varies with 
Specificity. The area under the ROC curve is an effective 
way of comparing the performance of different systems. A 
random discrimination will give an area of 0.5 under the 
curve while perfect discrimination between classes will give 
unity area under the ROC curve. ROC curves, however, can 
present an overly optimistic view of an algorithm’s 
performance if there is a large skew in the class distribution 
[14] as it is usually the case in seizure detection task. 
Precision-Recall (PR) curves, often used in information 
retrieval [3], have been cited as an alternative to ROC 
curves. While Recall is the same as Sensitivity, Precision
(also known in seizure detection literature as Selectivity,
Relative Specificity, Positive Predictive Value [6]) is defined 

TABLE I. FEATURES EXTRACTED FOR EACH EPOCH

Analysis Features 
Frequency 

domain 
- total power (0-12Hz), - power in frequency bands of 
width 2Hz from 0 to 12Hz with 50% overlap, 
- normalized frequency bands’ powers, - spectral edge 
frequency (80%,90%,95%), - dominant-peak frequency, - 
the energy in the 5th coefficient of Daubechy 4 wavelet 
decomposition that corresponds to 1-2Hz. 

Time domain - curve length, - number of maxima and minima, - RMS 
amplitude, - Hjorth parameters (activity, mobility and 
complexity), - ZCR, - ZCR of the  and the , - 
variance of  and , - AR modelling error (model order 
1-9), - skewness, - kurtosis, - nonlinear energy.   

Information 
theory

- Shannon entropy, - spectral entropy, - SVD entropy, 
- Fisher information. 
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as TP/(TP+FP), i.e. a percentage of correctly produced 
seizure epochs. Unlike the ROC area, the PR area is not 
equal to 0.5 for random discrimination but depends on class 
priors. Only a few papers report the ROC curves of their 
algorithms [11] and none have reported the PR curve. 

B. Event-based Metrics 
The event-based metrics are thought to reflect the 

performance of a system for a specific application. Unlike 
the epoch-based metrics, the subsequent decisions of the 
same class are joined to create an event. There are two 
scores defined. Good detection rate (GDR) is defined as the 
percentage of seizure events as labelled by an expert in 
neonatal EEG correctly identified by the system. If a seizure 
was detected any time between the start and end of a 
labelled seizure this was considered a good detection [1]. 
The other score is the number of false detections per hour
(FD/h) calculated as the number of produced seizure events 
in one hour that have no overlap with actual reference 
seizures. To cope with the spiky nature of false detections, 
the metric FD/h is at times reported by joining not only 
subsequent false detections but also those that lie fewer than 
30s apart from each other [1]. The resulting metric is always 
better than that initially defined and is marked FD/h (30s) 
throughout this work. The curve of variation of GDR with 
FD/h should be reported to enable comparison of systems. 
To the best of our knowledge this has not been reported 
previously.  

The new metric which is proposed in this work is the 
mean false detection duration (MFDD). It will be shown in 
the experimental part of this paper that reporting the two 
event-based metrics can be misleading unless the MFDD is 
also reported. In a real application, FD/h indicates the 
number of times a clinician has to check the results of an 
automatic detector in vain; however, not only the number of 
times but also the total amount of time should be reported. 
For instance, if both systems can give 90% of GDR, the first 
one with a cost of 1 FD/h of 20m duration and the other 
with a cost of 2 FD/h each of 1m duration, the second 
system may be preferred as the results of the first system 
imply that ~30% of time a clinician has to check the EEG 
monitor in vain, with only ~ 3% of time in the second case.  

IV. EXPERIMENTS AND DISCUSSION

A. Database and Experimental Setup 
The dataset is composed of recordings from 17 patients. 

The combined length of the recordings totals 267.9h and 
contains 691 annotated seizures which range from less than 
1m to 10m in duration. An eight channel bipolar montage is 
used to replicate the conditions under which the data is 
annotated. The 10-20 bipolar montage reduces for neonates 
to F4-C4, C4-O2, F3-C3, C3-O1, T4-C4, C4-Cz, Cz-C3 and 
C3-T3. The N-fold cross-validation is used to evaluate a 
system in a patient-independent way. Here N is the number 
of patients with all but one patient’s data used for training 

and a remaining patient’s data used for testing. This scheme 
is repeated N times and the results are averaged.  

B. Experimental Results and Discussion 
Initial experiments showed that the best performance was 

obtained with length of MAF equal to 15 decisions. Collar 
widths of 0, 40s and ~3m were chosen to investigate the 
variation of performance of the system. The curve of 
variation of GDR with FD/h for 3 different collar widths at 
MAF=15 is shown in Figure 1. It is obvious from Figure 1, 
that if a constant FD/h is specified, then the GDR can be 
increased by increasing the collar width. Hence, two event-
based metrics can be made arbitrarily good by increasing the 
collar width and thus reporting of only GDR and FD/h can
be misleading. In this situation, the proposed MFDD metric 
may be useful. Figure 1 shows that the system with largest 
collar can obtain GDR of ~98% with a cost of having 1 FD/h
of ~12m. In comparison, the no-collar system has 
consistently lower values of GDR (~83% at 1 FD/h) but also 
the mean duration of a false detection is considerably lower 
(~0.7m in comparison to ~12m). The system performance 
with the collar width equal to 40s falls between these.  

Figure 2 shows ROC curves (a) and PR curves (b) for the 
3 different collar widths along with the mean and standard 
deviation of the area under the curves in %. The highlighted 
points on the curves correspond to the system performance at 
1 FD/h (Figure 1). As it can be seen from Figure 2a, despite 
having a high GDR the widest collar results in the lowest 
specificity (0.53) at 1 FD/h, i.e. only slightly more than half 
of all non-seizure segments are correctly detected by that 
system. On the contrary, the no-collar system classifies 
correctly almost all non-seizure epochs (high specificity) but 
only half of all seizure epochs are identified. Obviously, it 
would be impossible to compare these two systems if only 
the outlined points were reported. The largest ROC area 
averaged over all patients was obtained with the collar equal 
to 40s. Indeed none of the combination of MAF and collar 
led to the larger ROC area (96.3%). The smallest standard 
deviation of the ROC area (2.4%) for the 40s-collar system 
indicates that the system is the most stable, performing 
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equally well for all the patients in the database. For 
comparison, the best results using LDA reported in [11] and 
previously obtained on the same DB were 82% in term of 
ROC area. The increase in performance is due to both the 
usage of the SVM classifier and the post-processing steps.  

In contrast to low values of Specificity obtained for 1 
FD/h in Figure 2a, the low value of Precision for the ~3m-
collar system in Figure 2b at the highlighted point indicates 
that less than 40% of all produced seizure epochs are indeed 
seizures. However as only 1 FD/h is produced at this point 
with almost 100% of Recall, most falsely-detected seizure 
epochs are actually concatenated to detected seizures. We 
can also see that unlike ROC curves, the PR curves of all 
systems indicate there is still large room for improvement.  

To better examine the behaviour of the system with 
MAF=15 and collar=40s, results are shown in Figure 3 
where various epoch-based and event-based metric values 
are mapped on the common FD/h x-axis.

As it can be seen from Figure 3, the system can correctly 
detect ~89% of seizure events with a cost of 1 FD/h with an 
average duration of 2.7m, ~96% with a cost of 2 FD/h each 
with an average duration of 2.7m, or ~100% with a cost of 4 
FD/h each of average duration of 3.2m.  

Starting at point 0.25 FD/h the event-based GDR tends to 
closely match the epoch-based Sensitivity/Recall measure. 
This indicates that the system shows equally high temporal 

precision and detection rate. The only significant 
difference appears at the point of 0 FD/h where 
less than 20% of Sensitivity results in more than 
50% of GDR.

The robustness of the system can also be seen 
by examining the FD/h (30s) metric which 
appears to be quite close to actual FD/h up to 4 
FD/h. Hence, for the proposed system there is no 
need to adapt the metric to better match the 
system behaviour.  

Indeed, Figure 3 shows the entire performance 
of the system in terms of the epoch-based and 

event-based metrics. For a complete comparison (for 
instance, in evaluation campaigns, etc), from Figure 3 it is 
possible to define an evaluation metric, e.g. a (weighted) 
average of the areas under GDR, Sensitivity, Specificity, and 
Precision up to 3 FD/h.

The proposed SVM-based seizure detection allows control 
of the final decision by choosing different confidence levels 
which makes the proposed system flexible for clinical needs. 

REFERENCES

[1]. J. Gotman D. Flanagan, J. Zhang, B. Rosenblatt, “Automatic seizure 
detection in the newborn: methods and initial evaluation”,
Electroencephalography and Clinical Neurophysiology, v. 103, 1997. 

[2]. A. Liu, J. Hahn, G. Heldt, and R. Coen, “Detection of neonatal 
seizures through computerized EEG analysis”, 
Electroencephalography and Clinical Neurophysiology, v. 82, 1992. 

[3]. P. Celka and P. Colditz, “A computer-aided detection of EEG seizures 
in infants, a singular-spectrum approach and performance 
comparison”, IEEE Transactions on Biomedical. Engineering, v. 49, 
pp. 455–462, 2002. 

[4]. S. Faul, G. Boylan, S. Connolly, L. Marnane, and G. Lightbody, “An 
evaluation of automated neonatal seizure detection methods”, Clinical
Neurophysiology, v. 116, pp. 1533–1541, 2005. 

[5]. W. Deburchgraeve, P. Cherian, M. D. Vos, R. Swarte, J. Blok, G. 
Visser, P. Govaert, and S. V. Huffel, “Automated neonatal seizure 
detection mimicking a human observer reading eeg”, Clinical
Neurophysiology, in press, 2008. 

[6]. A. Aarabi, R. Grebe, and F. Wallois, “A multistage knowledge-based 
system for EEG seizure detection in newborn infants”, Clinical
Neurophysiology, v. 118, pp. 2781–97, 2007. 

[7]. B. Scholkopf, A. Smola, Learning with Kernels, MIT Press, 
Cambridge, MA, 2002. 

[8]. T. Runarsson and S. Sigurdsson, “On-line detection of patient specific 
neonatal seizures using support vector machines and half-wave 
attribute histograms”, Computational Intelligence for Modelling, 
Control and Automation, v. 2, pp. 673–677, 2005. 

[9]. A. B. Gardner, A. M. Krieger, G. Vachtsevanos, and B. Litt, “One-
class novelty detection for seizure analysis from intracranial EEG”, 
Journal of Machine Learning Research, v. 7, pp. 1025–1044, 2006. 

[10]. S. Faul, G. Boylan, S. Connolly, W. Marnane, and G. Lightbody, 
“Chaos theory analysis of the newborn EEG - is it worth the wait?”, 
Proc. WISP, pp. 381–386, 2005. 

[11]. B. R. Greene, W. P. Marnane, G. Lightbody, R. B. Reilly, and G. B. 
Boylan, “Classifier models and architectures for EEG-based neonatal 
seizure detection”, Physiological Measurement, v. 29, 2008. 

[12]. J. Weston, J. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, V. Vapnik, 
“Feature selection for SVMs”, Proc. NIPS, 2000. 

[13]. F. Provost, T. Fawcett, R. Kohavi, “The case against accuracy 
estimation for comparing induction algorithms”, Proc. ICML, 1998.  

[14]. J. Davis, M. Goadrich, “The Relationship between Precision-Recall 
and ROC Curves”, Proc. ICML, 2006. 

[15]. J. Platt, “Probabilistic outputs for SVM and comparison to Regularized 
likelihood methods”, Advances in Large Margin Classifiers, 1999. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance of SVM-based Seizure
Detection System (MAF=15, Collar=40s)

False Detection per Hour (FD/h)

M
et

ric
s 

va
lu

es

2.4m

0.5
+

2.7m

1
+

2.7m

2
+

2.9m

3
+

3.2m

4
+

3.4m

Good Detection Rate
Sensitivity/Recall
Specificity
Precision/Selectivity
FD/h (30s)

Fig. 3. Summary of the epoch-based and event-based metrics 
mapped at the common x-axis of FD/h.

2646


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

