
  

  

Abstract—In this study, we describe the application of least 
square method for muscular strength estimation in hand 
motion recognition based on surface electromyogram (SEMG). 
Although the muscular strength can consider the various 
evaluation methods, a grasp force is applied as an index to 
evaluate the muscular strength. Today, SEMG, which is 
measured from skin surface, is widely used as a control signal 
for many devices. Because, SEMG is one of the most important 
biological signal in which the human motion intention is 
directly reflected. And various devices using SEMG are 
reported by lots of researchers. Those devices which use SEMG 
as a control signal, we call them SEMG system. In SEMG 
system, to achieve high accuracy recognition is an important 
requirement. Conventionally SEMG system mainly focused on 
how to achieve this objective. Although it is also important to 
estimate muscular strength of motions, most of them cannot 
detect power of muscle. The ability to estimate muscular 
strength is a very important factor to control the SEMG 
systems. Thus, our objective of this study is to develop the 
estimation method for muscular strength by application of least 
square method, and reflecting the result of measured power to 
the controlled object. Since it was known that SEMG is formed 
by physiological variations in the state of muscle fiber 
membranes, it is thought that it can be related with grasp force. 
We applied to the least-squares method to construct a 
relationship between SEMG and grasp force. In order to 
construct an effective evaluation model, four SEMG 
measurement locations in consideration of individual 
difference were decided by the Monte Carlo method. 

I. INTRODUCTION 
LECTROMYOGRAPHY is measuring the electrical signal 
associated with the activation of the muscle. 

Electromyography can be used for a lot of studies (e.g., 
clinical, biomedical, basic physiological, classical 
Neurological, and biomechanical studies). Recently, in order 
to describe the neuromuscular activation of muscles within 
functional movements, kinesiological electromyography 
deserves attention and is established as an evaluation tool for 
various applied research[3-20]. In order to apply it simply, 
the surface electromyogram (SEMG) which is measured from 
the skins surface, is widely used as a control source for human 
interface such as myoelectric prosthetic hands[4,5,11,13,16]. 
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The SEMG related system has many practical examples of 
applications in various fields such as human interfaces. 
Human interfaces are reported by many researchers, and we 
call them “SEMG interfaces”. Our study also aims to develop 
the SEMG interfaces like myoelectric prosthetic hands. 
About an SEMG interface, it is desirable to operate it with the 
same feeling as the sensations of real body movement. In 
order to achieve this objective, accuracy recognition of 
motion, which is an essential requirement, and estimation of 
muscular strength are both important factors. However, 
conventional SEMG interfaces have mainly focused on how 
to achieve the accuracy using sophisticated signal-processing 
techniques which are represented by a neural network model 
and a nonlinear one. We think the ability to estimate 
muscular strength is also an important factor in controlling it. 
And furthermore, in consideration of simplicity and easy of 
use in using the SEMG interface, construction of simple 
discriminant model with a small number of measurement 
electrodes have been one of an SEMG interface’s main 
requirement. 

In this study, our objective is to develop the estimation 
method for muscular strength while maintaining the 
accuracy of hand motion recognition and to reflect the result 
of the measured power on the controlled object. In order to 
achieve this objective, we directed our attention to measuring 
sufficient amounts of information for SEMG. This is because, 
the disadvantages of SEMGs are that they have a large 
detection area and therefore, have more potential for cross 
talk from adjacent muscles. Each subject’s SEMG greatly 
differed depending on the individual’s tissue characteristics, 
physiological cross talk and so on. Therefore, it is a problem 
if a fixed common measurement condition is applied to all 
subjects. We think that there is a suitable measurement 
location for every subject, and it is more effective for solving 
individual differences than employing strong discriminant 
models. This work proposes an application method of two 
simple linear models, and the selection method of optimal 
electrode configuration for using them effectively. The 
selection method has been one of our main objectives. About 
the number of measurement electrodes, our current work 
shows “four electrodes” are satisfactory to our objective [10]. 
In order to perform the selection of optimal measurement 
electrode configuration, a 96ch multi electrode is required to 
be able to measure an individual’s differences for SEMG.   
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II. SYSTEM DESIGNS 
Our experimental system is divided into three stages. The 

first stage is the measurement of SEMG using multichannel 
electrode. As for SEMG measurement, almost all SEMG 
information about motion needs to be measured from the 
forearm. Second stage is SEMG signal processing. In this 
stage, we construct a discriminant analysis for motion 
recognition and the least square method for grasp force 
estimation. Final stage is evaluation of experimental results. 
Evaluation is performed by comparison of estimated grasp 
force value and real measured grasp force value. 

 

A. 96ch Multielectrode and SEMG measurement system 
The multi electrode is one of the features and the key of our 

system. This is used in order to detect an individual difference 
of a measuring SEMG while it is being used by the subject 
moving their hand. This multielectrode is attached to the 
forearm. A photographs of a forearm with attached 
multielectrode and the structure of the multielectrode are 
shown in Fig.1. To fit a forearm, we use a flexible silicone 
gum as the base of 96 silver electrodes. And we also designed 
the SEMG amplifier, which amplifies an SEMG signal about 
3,000 times and the frequency band is limited from 10 Hz to 
1,000 Hz. The amplified SEMG signals are sampled by a 
16-bit A/D converter at a rate of 2,000 Hz. 

     
 

 
Fig.1 Upper photoprahies show images of a forearm with attached 
multielectrode. Lower photograph shows our experimental 
equipment. Left side is measuring equipment for PC input and the 
resistance-to-voltage converter. Right side is 96-channels 
matrix-type surface multielectrode. 
 

B. Grasp force measurement system 
In order to estimate a grasp force based on an SEMG signal, 

it is necessary to determine the relationship between the 
SEMG characteristic of grip and a real grasp force for every 
individual. In the case of most measurement equipment for 
grasp force, the measured value is indicated by a needle that 
moves over a dial gauge, and as a result the acquired grasp 

data cannot be stored into a personal computer (PC). To 
analyze the relationship using a PC, we developed a grasp 
force measurement system that provides a real time grasp 
force measurement and the output data is stored on a PC with 
the SEMG simultaneously.  

A potentiometer is attached to the axis of rotation of the 
indicator, and translates the indicated value on the 
dynamometer into a resistance value. The resistance is 
converted to voltage using a resistance-to-voltage converter 
which we made. And the analog output voltage is converted 
to digital for PC input. Most dynamometers indicate only the 
maximum grasp force, but our equipment directly indicates 
the change of grasp. Fig.1 shows measuring equipment for 
grasp force and the resistance-to-voltage converter.  

 

C. Linear Discriminant Analysis     
 (Canonical Discriminant Analysis) 

 In order to discriminate the SEMG, we composed the pattern 
recognition system. Our system consists of three steps, 
feature extraction step, discriminant stage and classification 
stage. Each component of feature extraction iX  is denoted 
by 
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where c  is the constant for normalizing patterns, )(txi  is 

the sampled SEMG value at time t  of i  channel, and t' is 
sampling period.  
  Next, we constitute the discriminant function. We use 
“Canonical Discriminant Analysis” to decipher the EMG 
patterns. This discriminant function which makes a 
correlation ratio the maximum is extensible on condition that 

)2(!g  groups. In general, to classify )2(!g groups, 
2/)1( �gg discriminate functions are required. In case of 

many groups for being classified exist, a long calculation 
time is required. It means that the system loses a quick 
response and useful way to use. Therefore, we use the 
canonical discriminant analysis. An importance of this 
method is clear expression of the difference of each group. 
using a small number of canonical variate. The pattern class 
is decided by this canonical variate. And we decided to use 
three Canonical variates. 
 The discriminant function Z  is defined by 
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where a'  is the transpose vector of a , r  is the number of 
components. As shown in equation (2), canonical variate 
Z is uniquely decided depending on coefficient vector a . 
Vector a is calculated under the conditions of minimizing a 
correlation ratio. Finally, we obtain the eigenvalue problem. 
The solution of this problem was calculated by a calculator 
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and the coefficient vector a  was obtained from the 
eigenvector corresponding to the obtained eigenvalue. 
Canonical variate Z was computed by equation (2) using the 
coefficient vector a  and we obtained three Canonical variate 

321 ,, ZZZ . These constructed a discriminant space, and 
each motion group was classified by selecting a minimum 
Euclidean Distance based on this discriminant space. 
 

D. Grasp force estimation with least square method  
It is well known that there is a close relationship between 

the muscular force and the EMG signal (e.g., the dependence 
of the EMG/force ratio from angle position which can be 
eliminated by normalization of the MVC of force [1], and 
EMG/force ratios of three different muscles for MVC 
normalized EMG and force output data [2]). However, a 
considerable issue of this relationship is the individual’s 
characteristics. Thus, our system applies a personal 
EMG/force relationship depending on the individual’s 
muscle characteristics. In order to construct the relation 
between SEMG and grasp force, we decide to apply the least 
square method. This method is well known technique that is 
used to compute estimation of parameters and fit data.  

Now, the relationship is written by 

bXaY � ˆ                 (3) 

where Ŷ  is the grasp force data which is performed as the 
dependent variable, and X  is the features of SEGM which is 
performed as an independent variable. 

This(3) equation involves two free parameters which 
specify the intercept (a) and the slope (b) of the regression 
line.The least square method defines the estimate of these 
parameters as the values which minimize the sum of the 
squares between the measurements and the model. This 
amounts to minimizing the expression:  
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where H  stands for “error” which is the quantity to be 
minimized. Taking the derivative of H  with respect to a  
and b  and setting them to zero gives the following set of 
equations 
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Solving these 2 equations gives the least square estimates 
of a  and b  as: 
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The result of the relationship between the SEMG and the 

grasp force is shown in Fig.2. 
 

 
Fig. 2    Relationship between the SEMG signals and measured 

Grasp force 
 
 
 

III. EXPERIMENTAL RESULTS AND DISCUSSION 
We tested five normal subjects to evaluate our system. 

Requested motions were set to four types which were 
composed of three motions and one state (Grasp, Release, 
Wrist Flexion and Rest state). The rest state is relaxed and 
there is no motion. This is the initial state and recognition of 
the three motions is started after this state. The recognition 
was performed by every 300 ms, and once a grasp motion is 
recognized, our system moves to the grasp force estimation 
mode. While a grasp motion is recognized, our system keeps 
evaluating the grasp force. As for the motions, each subject 
received training to get used to the control of our system. 
However, we didn’t instruct the subject how to operate the 
system. Instead, they performed in their own way according 
to their individual’s characteristics. 

The experiment was set up as follows: 
1. Registration of the SEMG characteristic of the four 

motions for every subject. This data was used as 
“predefined data”for the both modeling. 

2. Selection of best configuration of four measurement 
electrodes  

3. Construction of estimation model and comparison with 
a real measured grasp data 
 

According to this procedure, the estimation experiment 
was performed. Fig.3 shows the comparison results of grasp 
force data between the estimated value and the real 
measurement one. From fig.3, the estimated value of the 
grasp force is a good approximation to the real one. 
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(a) subject A 

 
(b) subject B 

 
(c) subject C 

 
(d) subject D 

 
(e) subject E 

 
Fig. 3. The grasp force data of the estimated value and the real 
measurement value. The horizontal line shows the time series 

and vertical line shows the grasp force [kgf]. 

IV. CONCLUSION 
We have presented an estimation method for muscular 

strength while maintaining the accuracy of hand motion 
recognition, and experimental results shows the recognition 
of four motions were perfect and the grasp force estimated 
results fit well with the real measured.  
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