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Abstract—The paper presents a novel approach of pseudo 2D 
random sampling scheme for application of compressed sensing 
in Cartesian magnetic resonance imaging (MRI). The proposed 
scheme is realized by a pulse sequence program which switches 
the directions of phase encoding and frequency encoding during 
data acquisition such that both kx and ky directions can be 
undersampled randomly. The resulting random sampling 
pattern approximates the ideal but impractical 2D patterns. 
Both the simulation and experiment results show the proposed 
method is superior to the existing 1D random sampling and 
similar to the ideal 2D random sampling in terms of the 
reconstruction quality. This method can potentially improve the 
MR imaging speed through the application of compressed 
sensing in conventional MRI. 

I. INTRODUCTION 
ONSIDERABLE attention has been paid to compressed 
sensing (CS) in the MRI community recently [1-8]. 

Compressed sensing is a novel reconstruction theory which 
allows exact recovery of a sparse signal from a highly 
incomplete set of samples [9, 10], and thus has the potential 
for significant reduction in MRI scan time.  

Most existing work in Cartesian sampling has focused on 
1D random sampling scheme. Although the 2D random 
sampling scheme is known to perform better than the 1D 
scheme, it cannot be physically realized in an MRI scanner 
because of the hardware constraints [1]. To address this 
challenge, multi-excitation is a straightforward solution. 
However, the modification of hardware in conventional MRI 
scanners increases the cost. 

In this paper, we propose a pseudo 2D random sampling 
scheme for compressed sensing MRI with Cartesian 
trajectories. The sampling scheme first randomly 
undersamples the k-space along one direction, and then 
changes to the other. The proposed scheme is realized by a 
pulse sequence program which alternatively switches the 
directions of phase encoding and frequency encoding during 
data acquisition.  The resulting random sampling pattern 
approximates the 2D patterns. The experimental results show 
that the proposed scheme can be easily realized in 
conventional MRI scanners. In addition, the reconstructions 
with the proposed scheme is superior to that with 1D 
sampling scheme and approaches that with 2D scheme, when 
the same reduction factor is used. The proposed method 
should enhance application of compressed sensing in 
conventional MRI scanner. 
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II. BACKGROUND 
Compressed sensing (CS) is used to recover a signal x with 
size n from its linear measurements y with size m: y x= Φ , 
where m is assumed to be smaller than n. If a vector, x, has a 
sparse representation under some sparse transformation Ψ, 
then x can be recover from a sample y, by solving a convex 
program: 

1
min

x
xΨ s.t. x y=Φ . To achieve faithful recovery 

from very few measurements, some sufficient conditions 
need to be satisfied [11]: (a) the signal is sparse after a known 
sparsifying transform Ψ, (b) the encoding matrix Φ is 
incoherent with the sparsifying transform Ψ, and (c) the 
measurements exceed the minimum requirement, which is 
usually 2 to 5 times the sparsity of x.  

SpareseMRI [1] is one of the methods to apply CS to 
conventional MRI with Cartesian sampling. Although 
simulation shows that SparseMRI can achieve a much higher 
reduction factor with 2D random sampling, the practical 
constrains limit the random sampling to be along 1D only. 
The method fully samples along the frequency encoding 
direction and randomly undersamples along the phase 
encoding direction using a variable-density sampling scheme 
with denser sampling near the center of the k-space. The 
desired image x is reconstructed by solving the following 
equation: 

  ( ){ }2
1 22 1

arg min
x

y x x TV xλ λ− + ⋅ + ⋅uF Ψ              (1) 

where y is the measured k-space data, uF  is the random subset 
of the rows of the Fourier encoding matrix, Ψ is the 
sparsifying transform matrix, and ( )TV ⋅ is total variation.  

III. METHOD AND IMPLEMENTATION 
Our objective is to design a practical random sampling 

scheme for conventional Cartesian MRI that performs 
similarly to the 2D random sampling scheme. The 2D random 
sampling uses a 2D variable-density sampling scheme with 
denser sampling near the center of the k-space. The 
probability function for sampling at a location r  in k-space 
is [1]:  

                     ( )
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                              (2)    

where
2

r r= , [ ]T
x yr r r= , and R is a real number and 

0 1R< < . Since the 2D random sampling cannot been 
physically implemented in conventional MRI scanners, 1D 
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random sampling is adopted instead. The 1D random 
sampling uses a 1D variable-density sampling scheme with 
denser sampling near the center of the k-space. The 
corresponding probability function is:  

               ( )
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                             (3)    

where the parameters are defined as same as Eq. (2).  
Our proposed sampling scheme adopts a distribution 

function different from either 2D or 1D random sampling. It 
uses two 1D variable-density sampling that are orthogonal to 
each other in Cartesian k-space, also with denser sampling 
near the center of the k-space. The corresponding probability 
function is:  
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where the parameters are defined as same as Eq. (2).  a  is a 
constant that depend on the number of sampling lines along kx 
direction of k-space. 

Figure 1 compares the probability functions of the three 
random sampling methods. It is obvious that the proposed 
pseudo 2D random sampling is closer to the 2D random 
sampling than the 1D random sampling is. As a result, the 
proposed pseudo 2D random sampling should outperform the 
1D random sampling in CS reconstruction. 

 

 
 
 
 

 

 
 

 
Fig. 1 Probability function (left) and the corresponding sampling 

pattern (right) of the three random sampling schemes 
 
In conventional Cartesian MRI, phase encoding gradient 

and frequency encoding gradient are applied on orthogonal 
directions in k-space [12]. The amplitude of phase encoding 
gradient is changed at each excitation to sample a different 
line in k-space. The 1D random sampling can be easily 
implemented by changing the amplitudes of phase encoding 
randomly. However, it is extremely difficult (if not 
impossible) to implement 2D random sampling which 
requires simultaneous change of the phase encoding and 
frequency encoding gradients randomly. In current systems, 
gradients are limited by maximum amplitude and maximum 
slew-rate. In addition, high gradient amplitudes and rapid 
switching can produce peripheral nerve stimulation.  

The proposed pseudo 2D random sampling scheme can be 
implemented on a conventional MRI scanner as easily as the 
1D scheme. To realize the proposed sampling scheme, both 
the amplitude and the direction of the phase encoding 
gradient have to change accordingly. For example, if a total of 
N lines are to be acquired, the first N1 lines are acquired with 
phase encoding along kx direction and frequency encoding 
along ky direction, and the rest (N-N1) lines with phase 
encoding along ky direction and frequency encoding along kx 
direction. In either case, these data are randomly 
undersampled along the phase encoding direction only, while 
keeping the frequency encoding direction fully sampled. The 
value of N depends on the undersampling factor to achieve, 
and the value of N1 is equal to a N, where a is the constant in 
Eq. (4).  

Figure 2 shows the timing diagram of the pulse sequences 
for the proposed pseudo 2D random sampling. The gradients 
shown in solid red represent the 1D random sampling 
sequence with phase encoding along y and frequency 
encoding along kx direction. In the proposed pseudo 2D 
random sampling, we alternate between the gradients in solid 
red and those in dashed green. It corresponds to switching 
phase and frequency encoding directions alternatively.  

As seen in Fig. 1 (a), at certain locations of the k-space, the 
data are acquired twice – one from the horizontal lines and the 
other from the vertical lines. The two values are averaged to 
represent the value of the data at this point. There are a total of 
N1 × (N-N1) such points. Although there is redundancy in such 
data acquisition, the averaging can improve the signal to 
noise ratio of the acquired data and thus the reconstructed 

(a) Proposed pseudo 2D random sampling  

(b) 1D Random Sampling 

(c) 2D Random Sampling 
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image.  
With the data acquired using the proposed sampling 

scheme, the image is reconstructed by the following nonlinear 
convex program [13, 14]:  
      ( ){ }1arg min || ||

x
x TV xα+ ⋅Ψ  s.t. 2|| ||x y ε− <uF    (5) 

where x  is the image to be reconstructed and is presented as 
a vector; Ψ denotes the linear operator that transforms the 
image from a pixel representation into a sparse representation, 
such as wavelet; y  is the acquired k-space data; uF  is 
Fourier Transform associated with the proposed 
undersampling pattern; ( )TV ⋅  is the total-variation; and ε  
controls the fidelity of reconstruction to the measured data. 
The threshold parameter ε is usually set below the expected 
noise level. 

 
Fig. 2 Timing diagram of the pulse sequences for the proposed 

pseudo 2D random sampling 

IV. EXPERIEMENTS 
Both simulation and experiment were carried out to 

compare the reconstruction results of the proposed pseudo 2D 
random sampling with the existing 1D random sampling and 
the desired ideal 2D random sampling. For validating the 
proposed pulse sequences, Bloch simulation [15] was done to 
demonstrate the feasibility of the proposed sampling scheme. 
A ball with 5cm radius is used as the desired object. The 
image of size 128×128 is reconstructed from the simulated 
data using the CS algorithm. Figure 3 shows the 
reconstruction results with the proposed sampling and the 
existing 1D sampling. With the same reduction factor of 2, 
the image using the 1D sampling method shows 
undersampling artifacts (ripples horizontally in background) 
and the image using the proposed sampling method is seen to 
be free of such artifacts.  

In the experiment, a phantom was scanned using a 
sequence designed in Figs. 4 and 5. Specifically, the phantom 
was scanned with phase encoding along y first and then along 
x afterwards. The data were acquired in full with size of 
256×256 and then manually undersampled according to the 
three random sampling patterns to simulate the desired 
reduction factors. Identity transform was used as the sparse 
representation in Eq. (5). The reduction factors of 2 and 2.86 
were used. The results show that the proposed pseudo 2D 

random sampling scheme performs similar to the 2D random 
sampling scheme, and is superior to the 1D random sampling 
scheme.  

 
Fig. 3 Bloch simulation results of the proposed pseudo 2D random sampling 
scheme (left) and the existing 1D random sampling scheme (right). The 
image size is 128×128, and the reduction factor is 2. The top are the 
reconstruction results, and the bottom are the corresponding sampling 
patterns. 

V. CONCLUSIONS 
We have presented a novel random Cartesian sampling 

technique for applications of CS in conventional MRI. The 
simulation and experiment results have shown promising 
results to accelerate imaging speed with high reconstruction 
quality. 
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Fig. 5 Phantom reconstructions (left) and the corresponding sampling 
patterns (right) of the proposed, 1D random and 2D random sampling 
methods. A reduction factor of 2.86 is used 
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