
  

  

Abstract—In the article, an iterative reconstruction algorithm 
based on total variation minimization and POCS optimization 
for non-Cartesian K-space data is proposed. The proposed 
algorithm interpolates non-Cartesian data onto a 2D Cartesian 
grid using gridding method first, and then during the iterative 
process of total variation minimization, the frequency values on 
grid points near the measured data are replaced with the 
interpolated ones according to POCS. The experiments on 
simulated and real data show that the proposed method can 
reconstruct image more accurately and rapidly than 
constrained total variation minimization method. 

Index Terms- MRI; non-Cartesian sampling; Total Variation; 
POCS 

I. INTRODUCTION 
ON-CARTESIAN scanning techniques, such as spirals, 
radial lines have benefits associated with fast data 

acquisition and insensitive to flow, so they are widely used in 
various applications such as contrast-enhanced angiography, 
functional brain imaging. However, the data from 
non-Cartesian sampling do not distribute on the equal spaced 
grid points, and can not be reconstructed by fast Fourier 
transform (FFT) directly. The usual way is to interpolate the 
non-Cartesian K-space data onto a 2D Cartesian grid firstly, 
and then perform FFT to get the image, such as gridding [1], 
Non-uniform Fast Fourier Transform (NUFFT [2]). However, 
the radial or spiral scanning usually samples high frequency 
data in K-space with low sampling density, which can result 
in large approximation error on the grid points which are far 
away from measured data in high frequency domain when 
interpolation methods are applied. 

The feasible methods may be iterative reconstruction 
methods with prior constraints [6]. The regularization 
functional is the key to restricting noise and artifacts 
efficiently during iteration. As classical L2 norms tend to 
produce images with blurred edges, some authors choose L1 
norm, total variation (TV, L1 norm of image’s gradient), as 
the regularization functional. Because TV constraints can 
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restrict artifacts and noise efficiently without smoothing 
edges, it has been widely used in other image processing 
areas such as restoration[4], reconstruction[5][6] since it was 
first introduced to image denoising [3]. 

The Constrained TV (CTV) minimization reconstruction 
algorithm was proposed by Xiao-Qun Zhang and Jacques 
Froment [6], it only regards TV functional as the objective 
function to be minimized, which reduces the computation, 
and the simulated experiment in [6] also shows that CTV 
algorithm is efficient. As the constraint used by CTV is 
defined in the frequency domain, it is of potential use for MR 
data reconstruction. However, the constraint used in it are 
frequency intervals defined using minimum and maximum of 
measured data lying in the neighbor of grid points, which  
weakens the data consistency. At the same time, the 
computation of frequency intervals is highly computation 
intensive. For example, the computation complexity of 
constraint is O(N2M) for spiral scanning data where M is the 
number of measured data and N×N is image’s size. 

In this work, an iterative reconstruction algorithm based on 
TV minimization and POCS optimization for non-Cartesian 
MR data is proposed. The proposed method can be 
considered as an improved version of CTV algorithm, it 
interpolates non-Cartesian data onto a 2D Cartesian grid first, 
and then in the iterative process of TV minimization, the 
Fourier values on grid points which are close to measured 
K-space data are replaced with the interpolated one according 
to POCS principle, which imposes the data consistency of 
constraint. The proposed algorithm is abbreviated as 
POCS-TV in following part of this paper. 

II. THEORY 

A. Total Variation 
The TV of an image f which is defined on the bounded, 

open and convex region 2RΩ ∈ , can be formulated as follows 
[3] [6]: 

TV( )f f dx= ∇∫
Ω

                                 (1) 

where f∇  is the gradient vector of image f . The TV of a 
discrete image f  (N×N) can be expressed as: 
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f f f
=

= ∇ + ∇∑                   (2) 

where x f∇ and y f∇  are the elements of vector f∇ . 
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Fig.1 Illustration of calculating mask. Where ‘.’ stand for measured data, ‘+’ 
stand for the elements of mask, while small rectangle represents the neighbor 
of measured data. 

B. Constrained Total Variation Minimization Algorithm 
The algorithm is proposed for parallel CT reconstruction 

and it defines data consistent constraint in frequency domain 
[6], which makes it be of potential use for MR data 
reconstruction. The reconstruction problem is written as: 

* arg min TV( )
f D

f f
∈

=                                    (3) 

2

2 2, , , 1{ : ( ) , , , , , }N N N
i j i j i jD f R F f F F i j− +⎡ ⎤= ∈ ∈ ∀ =− −⎣ ⎦ …            (4) 

where *f  is the image to be reconstructed, D is the constraint, 

,( ) i jF f  denotes Fourier transform value of f on the grid 
point(i,j) while , ,,i j i jF F− +  represents the minimum and 
maximum of frequency values lying in the circle neighbor of 
grid point(i,j) respectively. During the process of TV 
minimization, ,( ) i jF f  is allowed to vary freely 
inside

, ,,i j i jF F− +⎡ ⎤⎣ ⎦ .  

III. METHOD 

A. POCS in MRI Reconstruction 
Assume H is Hilbert space of square-integrable functions, 

if partial K-space data ( , )G u v , ( , )u v Z∈  are given where Z  
is a closed region in the Fourier plane, then a convex 
constraint [11] { }2N

,: ( ) ( , ),( , )u vC f R F f G u v u v Z= ∈ = ∈ and C H⊂ is 

determined. For any image f x y H∈( , ) , assume that F(u,v) are 
the Fourier transform of f x y( , ), the projection of f x y( , ) 
onto C can be realized as follows: 

( , )    ( , )
( , )    ( , )

G u v u v Z
Tf

F u v u v Z
⎧ ∈⎪

= ⎨
∉⎪⎩

                                  (5) 

B. Definition of Constraint 
Assume that the size of the image to be reconstructed is 

N×N. The non-Cartesian MR data are interpolated onto a 2D 
Cartesian grid (size N×N) using gridding algorithm, the data 
after interpolation are denoted by 2 2 1( , ), , , ,N NV i j i j =− −… .The 

principle of redefining the constraint can be described as: For 
grid point (i,j),if it lies in the neighbor around real data, the 
interpolated data V(i,j) on (i,j) is preserved, otherwise the 
corresponding  frequency value on grid point(i,j) produced in 
the process of TV minimization is preserved. The process of 
computing constraint is sketched as follows: 

1) Calculating a mask (size N×N) based on the coordinates 
(x,y), ,x R y R∈ ∈ of non-Cartesian K-space data, mask(i,j). 
Assume that x,yS is the set of grid points lying in the square 
neighbor whose center is (x,y) and width is d. 

{ }( ) ,x,yS = i, j : i - x d j - y d≤ ≤                     (6) 

Then mask can be defined as: 

,

,

1    ( , )
mask( , )

0    ( , )
x y

x y

i j S
i j

i j S

⎧ ∈⎪
= ⎨

∉⎪⎩
                             (7) 

Fig.1. is the illustration of calculating mask. 
2) Set { }( ):mask( , ) 1L = i, j i j = , ( )F f  is the Fourier 

transform of f, then data consistent constraint is defined as: 
2

,: ( ) ( , ),   ( , ) { }N

i jC f R F f V i j i j L∈ = ∈=               (8) 

Selection of d in (6) is the key to C, if d is too large or too 
small, the consistency of constraint will be weakened. The 
complexity of computing constraint is O(M) for both radial 
and spiral sampling data where M is the number of measured 
data and N×N is the size of image.  

C. The Improved Reconstruction Algorithm  
The improved algorithm can be written as: 

* (TV( ))
f C

f argmin f
∈

=                                (9) 

with
2

,: ( ) ( , ), ( , ) { }N
i jC f R F f V i j i j L∈ = ∈=  

where f* is the reconstructed image.  
Generally, image f reconstructed by inverse Fourier 

transform is complex one, re imf f i f= + ⋅ , so the model of TV 
used in our algorithm is[8]: 

22
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∑

∑
                   (10) 

The solution of   (9) can be found by projection subgradient 
optimization method [6][9]: 

01 ( ( ))   0   k k k k kf P f t g f t f C+ = − > ∈                     (11) 
where g(f ) is a subgradient of TV(f ) at  f, P is the projection 
onto C. k stands for the kth iteration. One condition can 
guarantee   (11) convergent is [10]: 

2

0 0
,k k

k k
t and t

+∞ +∞

= =
∑ ∑= +∞ < +∞                      (12) 

For example,
1k

at
k

=
+

 where a is a positive constant. 

The algorithm can be described as follows: 
1) Interpolate non-Cartesian data onto a 2D Cartesian grid, 

get frequency values on grid point(i,j) 2 2 1( , ), , , ,N NV i j i j =− −… . 
2) Calculate a mask(i,j) using coordinates of non-Cartesian 
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data. 
3) Set L={(i,j):mask(i,j)=1},then determine the constraint 

2

,: ( ) ( , ),  ( , ) { }N

i jC f R F f V i j i j L∈ = ∈= . 

4) Get initial image f0 and determine iterative number Num, 
step size kt and set 0k = . 

5) Calculate ( )k k ktf f t g f= − and the projection of tf  onto 

constraint according POCS, assume ( )tF f is the Fourier 
transform of tf and PF is the frequency data after projection: 

,
,

( , )       ( , )
( )     ( , )i j

i j t

G i j i j LPF F f i j L
⎧ ∈= ⎨ ∉⎩

                             (13) 

Then take inverse Fourier transform of PF and set 
2( )tPf IFFT PF=  where IFFT2 stands inverse FFT. 

6)  Set k=k+1, if k<Num, return to step 5, or stop iteration. 

IV. RESULTS AND DISCUSSION 
In order to validate POCS-TV algorithm, we have 

experimented it on both simulated data and real data 
reconstruction. The initial image used in all experiments is 

reconstructed by girdding algorithm and
1k

at
k

=
+

. 

A. Simulated Experiment 
Simulated data (radial sampling, size 180 ×512) is 

computed from a 256×256 Shepp-Logan image with 
Gaussian noise (its variance is 0.02 while the pixel  value of 
image falls in [0,1]) using discrete Radon transform and 1D 
FFT. The reconstruction grid is oversampled to 512×512. 
Total iterative number in CTV and POCS-TV are 15, 
parameters used in CTV are a=0.005, r=3 (parameter r is 
given in [6], though parameter a is not given in [6], we chose 
the one that can produce best reconstruction result) while in 
POCS-TV are a =0.005, d=0.1(parameters a and d are 
experience values). 

The normalized mean square error (NMSE) of images is 
also calculated to compare reconstructed images in quantity: 

2

, 1

2

, 1

( ( , ) ( , ))
NMSE( )

( , )

N

r s
i j

r N

s
i j

m i j m i j
m

m i j

=

=

−
=

∑

∑

                     (14) 

where mr is the reconstructed image while ms is standard 
Shepp-Logan image. 

Table I shows NMSE of images and runtime for simulated 
experiment. Fig.2 shows the curves of variation of NMSE. 
Because of the role of TV functional, NMSE decreases 
significantly for both CTV and POCS-TV after iteration, and 
NMSE of image reconstructed by POCS-TV starts to be 
smaller than that of image reconstructed by CTV. However, 
as data consistency is weakened in CTV, it can’t prevent 
image from being excessively smoothed by TV functional, 
which results in that NMSE increases after 10 time iteration. 
For POCS-TV, thanks to high data consistency of constraint, 
the NMSE decreases all the time during iterative process. 

Fig.3 presents the reconstruction results of simulated 
experiment and Fig.4 illustrates the profiles of corresponding 
images. Visibly, image reconstructed by gridding (Fig. 3(b)) 
contains much noise and artifacts, which can be ascribed to 
low interpolation precision in high frequency domain. Thanks 
to TV functional, images reconstructed by CTV (Fig.3(c)) 
and POCS-TV (Fig.3 (d)) have little noise and artifacts 
though they are poorer than standard Shepp-Logan image. 

In addition, NMSE of image in POCS-TV is smaller than 
that in both CTV and gridding (see TABLE I), which 
indicates that image reconstructed by POCS-TV is more 
similar to the standard one. It can also be derived from image 
profiles (Fig.4) where the pixel value oscillations of image in 
POCS-TV is smaller than that in both CTV and gridding, The 
speed of POCS-TV is faster than that of CTV but not 

 
Fig.2 Varying curves of images’ NMSE vs iterative number 

   
(a)                                                    (b)  

   
(c)                                                    (d)  

Fig. 3 Reconstruction results of simulated experiment (image size 
256×256 ). (a) Shepp- Logan image, (b) image reconstructed by gridding, 
(c) by CTV,(d) by POCS-TV

TABLE I 
NMSE AND RUNTIME FOR SIMULATED EXPERIMENT 

 Gridding POCS-TV CTV 

NMSE 0.0548 0.0444 0.0499 

Runtime(s) 1.91 21.76 32.38 
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(a)                                                     (b)  

   
(c)                                                      (d)  

Fig. 5 Reconstruction results of T2 weighted brain data(image size 
320×320). (a) Shepp-Logan image, (b) image reconstructed by gridding,(c) 
CTV, (d) POCS-TV. (b), (c), (d) are got from enlarging part of (a) 2 times. 

 
Fig. 6 Profiles of images reconstructed from T2 weighted brain data

significant (see TABLE I), because the complexity of 
computing constraint in POCS-TV is O(M) which is near to 
O(N2) in CTV for radial sampling data, where M is the 
number of K-space data and N×N is the size of image.  

As the limitation of pages, we did not discuss parameters’ 
influence on reconstruction results. 

B. Real Data Experiment 
The real data is T2 weighted brain spiral sampling data (got 

from Workshop on Non-Cartesian MRI 2007, size 9×13624, 
we only used 1/3 of it, 9×4542). The reconstruction grid is 
oversampled to 512×512. Fig. 5 shows the reconstruction 
results of real data experiment. It is obvious that the image 
reconstructed by POCS-TV is the best in vision while that 
reconstructed by gridding is the worst, which also can be 
derived from image profiles presented in Fig. 6 where the 
pixel value oscillations of image reconstructed by POCS-TV 
is the smallest while  that in gridding is the largest. In addition, 
the time cost by POCS-TV, CTV and gridding are 23.17s, 
1343.13s and 4.12s respectively. Obviously, as an iterative 
method, POCS-TV is slower than gridding, but it is much 
faster than CTV for spiral sampling data, because the 
complexity of constraint computation of POCS-TV is O(M) 
while that of CTV is O(N2M). 

V. CONCLUTION 
By combination of TV regulation and accurate data fidelity 

constraints imposed by POCS principle, the proposed 
POCS-TV algorithm in this paper can reconstruct images for 
non-Cartesian MR data with less noise and artifacts than 
gridding and CTV algorithms. In addition, POCS-TV 
algorithm is also much faster than CTV algorithm when used 
for spiral MR data. Finally, POCS-TV can be extended for the 
reconstruction of sparse MRI data.  
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Fig. 4 Profiles of images reconstructed from simulated data along the 
centers of images in horizontal direction 
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