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Abstract—Compressed sensing (CS) has emerged as a 
promising method in the field of magnetic resonance imaging. 
Taking advantage of the signal sparsity in certain domain via L1 
minimization, CS requires only reduced k-space data to 
reconstruct an image. Since most clinical MRI scanners are 
equipped with multi-channel receiver systems, integrating CS 
with multi-channel systems may not only shorten the scan time 
but provide a better image quality. However, significant 
computation time is required to perform CS reconstruction. 
Furthermore, this burden will be scaled by the number of 
channels. In this paper, we proposed a reconstruction procedure, 
which uses multi-core processors to accelerate CS 
reconstruction from multiple channel data. The performance 
was tested in terms of comparing to different image sizes and 
using different number cores of CPU. Experimentally, it shows 
that the maximum efficiency benefits from parallelizing the CS 
reconstructions, pipelining multi-channel data on multi-core 
processors and choosing the numbers of channels as multiple 
numbers of cores. 
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I. INTRODUCTION 
AGNETIC resonance imaging (MRI) using conventional 
Fourier imaging is relatively slow as compared with 

other imaging modalities because the frequency domain data 
are sequentially sampled. A breakthrough of the sampling 
theory, i.e., Compressed Sensing (CS) [1,2,3], allows a sparse 
signal being reconstructed from a set of highly incomplete 
samples. CS theory lays a foundation for reducing MRI 
samples and increasing imaging speed. In [4], Lustig et al 
have made a success of applying CS to single imaging MRI to 
reduce the number of samples and have reported impressive 
results.  

Moreover, since the first implement of phased array system 
in early 1990s [5], significant efforts have gone into the 
development and applications [6]. Since the array coils 
receive signals from multi-channel simultaneously, they offer 
parallelism. This important property can be exploited when 
reconstructing images by using parallel computing. 

Because of the limited growth in processing clock and the 
problem of power consumptions, it caused a trend towards 
multi-core designed. The multi-core processor offers a 
platform for implementing parallel algorithms. In [7],  a 
conjugate gradient CG solver was implemented on 
NVIDIA’s G80 Graphics Processing Unit (GPU). It showed 
 

 
 

that the multi-core processor can accelerate the processing 
speed. Also, the implementation of CS reconstruction 
algorithm on a multi-core processor is proposed by Borghi et. 
al [8], who used the multi-core platform to solve the CS 
reconstruction problem, which involves L1 minimization. The 
work on implementing MRI reconstruction algorithms with 
multi-core processors is proposed in [9,10]. They accelerated 
the image reconstruction speed with NVIDIA’s GPU Quadro 
FX 5600. 

In this paper, we proposed a reconstruction procedure for 
combining CS with the phased-array receiver system, which 
can easily and efficiently use multi-core processors to 
accelerate the time for image reconstruction. We implement 
CS reconstruction algorithms with Intel’s Core 2 Quad 
Q8200 2.33 GHz CPU. As shown in our results, the 
implementation of the reconstruction algorithm can be 
benefited from the parallel computing and multi-core 
architecture. 

This paper is organized as follows. Section II introduces 
the methodology including the review of CS, phased Array 
multi-core processors, and the proposed method. Section III 
demonstrates the results, and finally the conclusions are 
drawn in Section IV.  

II. METHODOLOGY 

A. Compressed Sensing MRI 
 Based on the CS theory, Compressed Sensing MRI 
(CS-MRI) reconstructs an image x from a reduced set of 
incomplete k-space data y, where y = Φx with Φ being the 
randomly-sampled Fourier transform operator implemented 
by the phase-encoding and frequency-encoding gradients. 
Generally, for better image reconstructions, a sparsifying 
transform Ψis needed. Typically, Ψis a wavelet or gradient 
transform (total variation). Then, the under-sampled data can 
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    Fig. 1. The architecture for Intel core 2 quad CPU. 
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be recovered by the following constrained optimization 
problem. 

   
1min xΨ       Subject to   ε<Φ− xy      (1) 

  
Note thatεis a parameter corresponding to the data fidelity. 
Nevertheless, solving the optimization problem is 
computational and memory intensive when the equations are 
in a large scale.     

B. The Phased Array MR Receiver System 
 The phased array MR receiver system associates with a 

set of decoupled receiver coils and separate receiver channels. 
In principle, with phased array technology, an increase in 
imaging speed equal to the number of parallel coils can be 
achieved. Besides, since coil sensitivities are typically 
unknown, optimal and artifact-free image reconstruction is a 
challenge.  The most commonly used method for image 
reconstruction is so-called “sum-of squares” (SOS), which 
effectively computes the root mean square average of images 
associating with different coils. 

C. Multi-Core Processors  
Because of the limited growth in processing clock and the 

problem of power consumptions, increasing in the 
performance of single-core processors slowed down. It 
caused a trend towards multi-core designed, so that Intel 
places multiple processors on a single chip. A multi-core 
CPU is a standard superscalar and each core is composed of 
vector computing units. As depicted in Figure 1, cores are 
clustered by 2 and they share a common memory of level 2 
cache.  Besides, a front side bus interconnecting 2 clusters is 
also used to access the memory module (random access 
memory). As a result, this architecture can reduces memory 
access latency.  However, in most cases of running programs, 
the usage of CPU is not always fully utilized. Thus, how to 
use processors more efficiently on combining the parallel 
imaging and compressed sensing will be addressed on next 
section. 

D. The Proposed Method 
In this paper, we proposed a reconstruction procedure by 

using multi-core processors to accelerate the combination of 
multi-channel phased array and the compressed sensing MRI. 
The flow control is illustrated as Fig. 2. First, if the data 
received from different channels are properly sampled, by 
applying the CS theory, the reconstruction is obtained by 
solving eq.(1) individually. Moreover, the eq.(1) can be 
recast as minimizing 
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Note that Ψ represents the total variation and the 

regularization parameterλassociated with data fidelity is 
experimentally set to 0.001. Since there are many existing 

solvers for convex optimization, here, we use software 

package of sparseMRI [11], whose algorithm are based on the 
non-linear conjugate gradient method. Second, the data and 
their corresponding CS reconstructions can be parallelized 
into multi-cores CPU because they are data-independent. It 
can also be implemented in Matlab (Mathworks, Natick, MA) 
and the implementation takes advantage of the limitation that 
each Matlab process can only run in a single core. Thus, the 
CS reconstructions in Fig. 2 can be parallelized into different 
Matlab processes. We directly use the existing package of 
parallel processing on multiple cores, provided by M. 
Buehren [12]. Finally, all the reconstruction images are 
combined by the SOS addressed as the following equation. 
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Note that there are some overhead on saving and loading 

temporary files and communicating between processes. 
However, comparing to the reconstruction algorithms of 
compressed sensing, the overhead become little part of total 
computations. The proposed method is tested in computer 
simulations. Without scarifying the image quality, the 
performance was evaluated by the execution time of 
reconstructions. 

III. RESULTS 
In order to prove the effectiveness of our approach and 

compare the benefits and advantages of parallelizing the 
reconstruction using multi-core CPU, we work on an 
experimental platform that consists of an standard Intel Core 
2 Quad Q8200 2.33 GHz with 4 MB L2 cache and 4GB 
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Fig. 2. The reconstruction procedure for combining CS with the phased 
array MR receiver system. 

2685



  

DDR2. Preliminarily, we simulate the input data with the 
phantom of ‘Shepp-Logan’ and it is sub-sampled in 
frequency domain with the pattern of radial sampling. The 
sub-sample factor in each channel is about 40% and we limit 
the receivers to 4-channel data input (m*n = 2 in Fig.2). 
Besides, the operations on each core in Fig. 2 contain a full 
solver to find an optimum solution of CS reconstruction, 
which basically associates with minimizing eq. (2). 
Comparing the package of L1-magic, it has less sparse-matrix 
vector multiplications, which may easily cause CPU stall due 
to the limited memory bandwidth especially for large image 
sizes. The performance was tested in terms of execution time, 
image sizes, and the number usage of cores. 

Table 1 lists the execution time, which mainly counts the 
optimization function of CS reconstructions in Fig.2. In our 
computer simulation, we exclude the time of preparing 
multi-channel input data. The only overheads of the processor 
operations are listed in Table. 2, which include the runtime in 
saving and loading temporary files and Table 3 contains the 
stalled time that processors may wait for each others before 
continuing on the next operation (sum of square in Fig.2). 
Note that if multiple cores are working simultaneously, we 
only record the maximum stalled time and the maximum 
wasted time on reading/writing files among processors.  First, 
the time spent on saving and load temporary files is roughly 

1~2 seconds shown in Table 2, so that it is not very important 

when the image size becomes larger. In addition, Table 3 
shows that there is no processor stalling since only one core is 
used. Moreover, using 2 cores also gives less stalled time in 
processors (about 1~2 sec) because 2 cores can almost start 
running at same time and provide converged results if signals 
is received under same channel conditions. It is worth to 
mention that when we increase the number usage of CPU 
cores to 3, there is no benefit from 3 cores comparing to the 
usage of 2 cores. Because, in our experiments, we test the 
procedure of reconstruction with 4-channel data sequentially 
waiting for reconstruction, there are 2 processors stalling 
when 3 channel data is reconstructed and 1 channel data is left. 
Besides, as the image size gets larger, the stalled time increase 
significantly. We can observe that using 4 cores also has long 
stalled time for image sizes of 128 and 256. Intuitively, the 
main reason for contributing the stalled time comes from 
processors waiting for others to finish jobs since 4-channel 
data pipeline into 4 cores and they may not start or finish the 
job simultaneously.  

We subtract all the overhead and stalled time from Table 1, 
and plot them as a ‘CS’(blue) bar in Fig. 3. Comparing 
sub-plots for large image sizes with that of image size 32, the 
overhead and stalled time eliminate the advantage of the 
parallelization and lead to a little increase on computation 
time. However, when images become larger, the percentage 
of overhead and stalled time is significantly reduced and the 
parallelization of CS reconstructions gains much benefits.    

To further illustrate the efficiency and the performance, we 
plot the execution time of ‘CS’(blue) bar in Fig. 3 in terms of 
cores vs. execution time and images sizes vs. execution time 
shown in Fig. 4 and Fig. 5. Note that in figure 4, ‘p’ 
represents the total length of image size and the execution 
time excludes the overhead and stalled time. Surprisingly, 
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Table. 1. The total execution time counted in CS reconstruction 
modules in Fig.2 
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Table. 2.  The overhead on saving and loading temporary files. 
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Table. 3.  The stalled time of processors waiting for each other. 
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Fig. 3. The proportion CS, the stalled time, and overhead in the total 
execution time. Horizontal axis represents the numbers of core in use, 
and vertical axis represents the computation time of each portion. 
 

2686



  

using 2 cores has significant reduction in execution time. The 
average reduction factor is constantly about 1.684 no matter 
what image size is. Fig. 4 and Fig. 5 obviously shows that 
using 3 cores have almost the same runtime as using 2 cores; 
we have explained previously that when we use 3 cores and 
the total channels are 4, there are only 3-channel data that can 
be pipelined and dealt by 3 processors.  Therefore, the most 
efficient way to parallelize the reconstruction of CS running 
on different cores is to choose the numbers of channels as 
multiple numbers of cores. Moreover, using 4 cores give us 
the shortest reconstruction time. Comparing with using 1 core, 
the average reduction factor is constantly about 2.338; 
Comparing with using 2 cores, the average reduction factor is 
constantly about 1.321. The efficiency is not double as we 
double the number usage of cores since the memory 
bandwidth and the memory size are fixed and limited.  

IV. CONCLUSIONS  
We proposed an efficient reconstruction procedure for 

compressive sensing MRI with phased array MR receiver 
system. By utilizing multi-core architecture of CPU, it 
significantly shortens the reconstruction time. In our 
experiments with 4-channel data, using 2 cores of CPU gives 
maximum reduction of time on reconstruction; while using 4 
cores gives the fastest reconstruction over multi-channel CS 
MRI. Moreover, it appears that the maximum efficiency was 
gained by choosing the numbers of channels matching with 
the numbers of cores. Further research is required to 
maximize the efficiency of multi-core processors and other 
parallel processors such as Graphics Processing Units (GPU) 
for parallel MRI and CS imaging with channel numbers 
normally larger than 4.  
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Fig. 4.  Numerical results for comparing different numbers of cores. 
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Fig. 5.  Numerical results for comparing the computation of different 
image sizes. The time is in logarithmic scale. 
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