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Abstract—The choice of echo time (TE) is a complicated and
controversial issue in proton MR spectroscopy, and represents
a balancing act between signal-to-noise ratio and signal com-
plexity. The TE values used in previous literature were selected
either heuristically or based on limited empirical studies. In
this work, we reconsider this problem from an estimation
theoretic perspective. Specifically, we analyze the Cramér-Rao
lower bound on estimated spectral parameters as a function of
TE, which serves as a metric to quantify the reliability of the
estimation procedure. This analysis reveals that a good choice of
TE often depends on the particular metabolite of interest, and
is a function of both the coupling properties of the metabolites
and the general complexity of the spectrum.

I. INTRODUCTION

Magnetic resonance (MR) spectroscopy enables the non-
invasive differentiation and quantitation of different chemical
compounds. In proton (1H) MR spectroscopy, 1H nuclei
in different molecular environments resonate at different
frequencies in the presence of an externally applied mag-
netic field. This phenomenon can be manipulated to form a
spectrum, from which one can study the in vivo metabolism
of biological tissues.

In MR experiments, the echo time (TE) is an important
timing parameter that effects the signal-to-noise ratio (SNR),
the number of metabolites that contribute significantly to
the observed data, the complexity of the spectral baseline,
and the spectral profile of each individual metabolite. All
of these factors affect the interpretation of the observed
spectrum to varying degrees, and the choice of TE remains
controversial [1]. In particular, shorter TE spectra generally
have higher SNR and contain significant contributions from a
larger number of metabolites than long TE spectra; however,
this advantage can be offset by the more complicated signal
model that must be used to describe short TE data.

In the existing literature, the TE parameter was often
chosen based on qualitative metrics, such as the visual
characteristics of the spectrum, or to be consistent with
previous studies. Some quantitative empirical comparisons
between short and long TE spectra have been reported in [2]–
[4], though these studies only investigate up to three different
TEs.

In this paper, we consider the choice of TE from an
estimation theoretic perspective. Specifically, we analyze the
Cramér-Rao lower bound (CRB) on the variance of the
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metabolite amplitude estimates as a function of TE. While
retrospective use of the CRB is common in MR spectroscopy
as a metric of quality for an acquired experimental dataset
[5]–[7], we are interested in using the CRB prospectively
to guide the design of an experiment. This new approach
provides a method for identifying potentially useful TEs from
an arbitrarily large range of candidate values.

II. SPECTRAL MODEL AND CRAMÉR-RAO BOUND

EXPRESSION

A. Model formulation

The observed discrete signal from a system with N
spectral components can be modeled as the following:

s[m] =
N∑

n=1

an(TE)ejφ0ϕn,TE [m]ψn,rn [m] + ξ[m],

m = 0, ..., M − 1. (1)

Each spectral component is characterized by the real,
positive amplitude an(TE), known metabolite basis function
ϕn,TE [m], and the signal decay ψn,rn [m], where rn denotes
a lineshape parameter. In addition, the model includes a
zero-order phase term φ0 for the whole spectrum, and ξ[m]
denotes additive noise.

As TE increases, the amplitudes an(TE) decrease due to
spin relaxation, leading to a reduction in SNR. In this work,
we assume exponential decay such that

an(TE) = cne−TE/T2,n , (2)

where T2,n is a metabolite-dependent relaxation constant.
The basis functions ϕn,TE [m] can change with TE due to

quantum mechanical effects, and, as we will see later, this
plays an important role in the behavior of the CRB as a
function of TE. We assume that the basis function is known
and has the form

ϕn,TE [m] =
Ln∑
l=1

αl,n(TE)ejβl,n(TE)ej2πfl,n(TE)mΔt , (3)

where Δt denotes the sampling time and αl,n(TE),
βl,n(TE), and fl,n(TE) are the relative amplitude, phase,
and frequency of the l-th resonance, belonging to the n-th
metabolite. These parameters can be obtained from quantum
mechanical simulations.

In addition, we model the signal decay of each spectral
component as Lorentzian

ψn,rn [m] = e−mΔt/rn , (4)
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although this could be easily generalized to accommodate
more complicated lineshapes. Given the model (1), we are
interested in analyzing CRBs on the metabolite amplitudes
an(TE) as a function of TE.

B. Cramér-Rao bound expressions
We assume the unknown parameters are the amplitudes,

zero-order phase, and lineshape parameters, i.e.,

θ = {a1, ..., aN , φ0, r1, ..., rN}.
Cramér-Rao bound theory states that the variance of unbiased
estimates is always lower bounded by

var(θ̂k) ≥ [F−1]kk, (5)

where F is the Fisher information matrix [8].
We consider the context of additive complex Gaussian

white noise ξ ∼ N{0, σ2I}, for which the likelihood
function L(y) of the noisy data y can be easily expressed.
Thus, each element of the Fisher information matrix can be
computed as

F θiθj = E

[(
∂ ln L(y)

∂θi

)(
∂ ln L(y)

∂θj

)T ]
, (6)

where the symbol E denotes the mean over the noise. One
can further show that

{F }aiaj =
2
σ2

Re

{M−1∑
m=0

ϕ∗
i,TE [m]ψ∗

i,ri
[m]

× ϕj,TE [m]ψj,rj [m]
}

. (7)

Other elements in the Fisher information matrix have similar
expressions. Inverting the matrix F gives the desired CRB
matrix, with the first N diagonal elements being the CRBs on
the amplitudes an, which are of interest in this work. Notice
that the matrix entries depend on an inner product involv-
ing the basis functions and signal decay functions, which
suggests that there can be interactions among metabolites.

III. ANALYSIS OF TE SELECTION

We consider the following 17 MR-observable metabolites
in the human brain [9], [10]: aspartate, choline, creatine,
ethanolamine, GABA, glucose, glutamate, glutamine, glu-
tathione, histidine, homocarnosine, lactate, myo-inositol, N-
acetylaspartate (NAA), scyllo-inositol, taurine, and threo-
nine. For each metabolite, we simulate 1024 data points
according to (1) at the magnetic field strength of 3T and spec-
tral bandwidth of 1, 200 Hz. Spectral parameters α l,n(TE),
fl,n(TE), and βl,n(TE) are obtained from quantum me-
chanical simulations of a spin-echo MR experiment [11].
Basis functions are then computed as in (3). Metabolite
amplitudes, T2 values, and the lineshape parameter rn are
chosen to match reported values in the existing literature
[10], [12]–[14]. For simplicity, we ignore the background
signals originating from macromolecules and lipids.

The coefficient of variation, defined as the standard devi-
ation of the estimated metabolite amplitude divided by its

mean, is a common metric used in the literature to express
quality of parameter estimation. Thus, we consider the square
root of the CRB, normalized by the metabolite amplitude,
as a bound on the coefficient of variation. We denote this
bound as the coefficient of variation bound (CVB). From
the perspective of signal estimation, the desired TE is the
one that has the smallest CVB, which in practice might lead
to more accurate quantitation of metabolite concentrations.

A. Simple case of one metabolite
To gain insight into the evolution of the CVB with TE,

consider a reduced case where there exists only one spectral
component, i.e., N = 1. Due to decreased SNR at long TE,
one might expect that as TE increases, the corresponding
CVB increases. However, this is not true in general and
it depends on how the metabolite profile changes with TE.
The CRB on the amplitude can be reduced to the following
compact form:

CRBa1 =
σ2

2

(M−1∑
m=0

|ϕ1,TE [m]|2|ψ1[m]|2

− (
∑M−1

m=1 m|ϕ1,TE [m]|2|ψ1[m]|2)2∑M−1
m=1 m2|ϕ1,TE [m]|2|ψ1[m]|2

)−1

(8)

CV Ba1 =

√
CRBa1

c1e−TE/T2,1
. (9)

There are two factors affecting the change in the CVB as
TE changes. The first factor is the term e−TE/T2,1 , which
shows that the CVB of the amplitude has an exponential
dependence on TE. This factor comes from the inherent loss
of signal at long TE. However, the second factor, which is
the basis function ϕ1,TE [m], can offset the first factor by
changing the three summation series involved in (8).

Fig. 1 shows CVBs of the amplitudes of NAA and lactate
as a function of TE, together with their spectra at two repre-
sentative TEs of 20 ms and 140 ms. The difference between
the CVB curves of NAA and lactate is remarkable. In Figs.
1(c),(d) we observe that the CVB curve of NAA increases
monotonically with TE, while the CVB curve of lactate
does not. One possible explanation for this difference is that
except for a decrease in amplitude, the NAA spectrum does
not change shape as TE increases, while the lactate spectrum
does, particularly in the region of 1.3 ppm. This experiment
shows that even in the reduced case of one metabolite, an
increase in TE does not necessarily increase the CVB. This
behavior may not have been expected intuitively.

B. Case of two metabolites
Spectral overlap is typically considered as a confounding

problem in spectroscopy. To gain insight into the effect of
the spectral overlap on the CVB, we consider the case of
glutamate and glutamine. It is reported that a strong overlap
of glutamate and glutamine resonances complicates their
detection [10]. We compute the CVB on the amplitude of
glutamate as a function of TE when glutamate is present
in the spectrum alone and when glutamine is added to the
spectrum, shown in Fig. 2(c). We observe that even when
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Fig. 1. The top row shows the change of the metabolite profiles with TE:
(a) spectra of NAA at TE=20 ms (in red) and TE=140 ms (in black); (b)
spectra of lactate at TE=20 ms (in red) and TE=140 ms (in black), shown
in the same scale as (a). The bottom row shows the CVB on the amplitude
of (c) N-acetylaspartate (NAA) and (d) lactate as a function of TE. The
non-monotonic behavior of the CVB curve of lactate compared to NAA
can be explained by the fact that the lactate spectrum changes significantly
in the region of 1.3 ppm, while the NAA spectrum does not, except for a
decrease in amplitude.
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Fig. 2. The top row shows the spectra of (a) glutamate and (b) glutamine
at TE=5 ms, both on the same scale. Spectral overlap is observed in the
regions from 1.8 ppm to 2.6 ppm and from 3.5 ppm to 4 ppm. The bottom
row shows (c) the CVB on the amplitude of glutamate in the presence (in
black) and absence (in red) of glutamine; (d) the CVB on the amplitude of
glutamine in the presence (in black) and absence (in red) of glutamate. In
both cases, the CVB of one metabolite is not significantly affected by the
presence of the other metabolite. This is not expected if judging intuitively
from the observed spectral overlap.
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Fig. 3. CVB on the amplitude of (a) lactate and (b) choline in the case
of regular (17 metabolites) and reduced (7 and 4 metabolites) models. The
CVB curve decreases as the model order decreases. For clarity, this figure
should be viewed in color.

there is overlap between these two metabolites, such as in
the regions from 1.8 ppm to 2.6 ppm and from 3.5 ppm to
4 ppm (see Figs. 2(a),(b)), the CVB increases by a small
factor ranging from 1.0 to 1.2 at different TEs. Similar CVB
behavior is observed for the case when glutamine is present
in the spectrum alone and when glutamate is added to the
spectrum, shown in Fig. 2(d). Thus, the CVB plots show
that overlaps in the spectra do not necessarily cause a large
increment in the CVBs. From the CRB perspective, spectral
overlap is not a significant obstacle for the quantitation of
metabolite concentrations, unlike what visual intuition may
suggest.

C. General case of many metabolites
To gain insight into the CVB evolution as a function

of TE in a more complete model, we consider a spectrum
containing all of the 17 listed metabolites. In addition, to
examine whether a reduced model order can lead to a
further decrease in the CVB, we also consider two additional
models. The first reduced model has 7 commonly reported
metabolites that give rise to large signals at short TE: NAA,
choline, creatine, glutamate, glutamine, lactate, and myo-
inositol [9]. A further reduced model consists of 4 commonly
observed metabolites that have long T2 values and contribute
mainly to large signals at long TE: NAA, choline, creatine,
and lactate [9].

Theoretically, it is clear that the reduced model describes
the observed MR resonance process less accurately than the
original model with more metabolites. In practice though,
any loss of accuracy of the reduced model decreases at longer
TE, because the signal contribution from metabolites with
short T2 becomes very small. However, the exact value of
TE at which we can reliably assume a reduced model is still
an open question and needs future investigation.

Figure 3 shows CVBs of the amplitude of lactate and
choline for the original model with 17 metabolites, the re-
duced model with 7 metabolites, and the reduced model with
4 metabolites. In the cases of both lactate and choline, we
see that reducing the model order from 17 to 7 metabolites
yields a smaller CVB at each TE. This confirms that the
decreased correlation between metabolites lowers the CRB,
and hence, the CVB. However, further reducing the model
order from 7 to 4 metabolites does not yield a noticeable
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improvement, as can be seen from Fig. 3. Assuming we know
the value of TE at which the reduced model is reasonable,
we can tell from the corresponding CVB plots whether using
the reduced model with prolonged TE could yield a smaller
CVB compared to the original model at short TE. Notice that
because the CVB curves tend to increase as TE increases,
the CVB criteria suggests that excessively long TE values
should not be chosen even when using the reduced model.

In this discussion, we have ignored the presence of
background signals. When these signals are included, we
expect the CVB will increase further at short TE. Because
background signals decay quickly as TE prolongs, their
inclusion would potentially favor the choice of longer TEs.

IV. CONCLUSIONS

In proton MR spectroscopy, echo time (TE) is a crucial
parameter that influences the appearance of the observed
spectrum. In this work, we provided a quantitative analysis
of the effect of different TE values. Specifically, based on
estimation theory, we use the CRB to compute a bound on the
coefficient of variation of the unknown spectral amplitudes
as a function of TE. We showed that the form of the
spectral basis functions and their interactions through inner
products play important roles on the achievable estimation
performance. We also observed that the use of a reduced
model, with a smaller number of metabolites at long TE,
may or may not yield a reduction of the CVB compared
to the regular model at short TE. The relative performance
of different models depends on the metabolite of interest,
and the range of TEs at which each model can be reliably
assumed. Unlike empirical studies, which face practical
limitations on acquisition time, this CRB analysis enables
easy evaluation of an arbitrarily large range of TEs.
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