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Abstract—A comprehensive, analytical framework for MR–
DTI is constructed in a linear algebra setup. The expressions
describing the effects of imaging gradients show formulation
ambiguities. Center–symmetric gradient schemes use no cross
terms (NoCroT) in the calculations resulting, at least in theory,
in the alleviation of the issue. When three estimation methods,
all gradients, NoCroT and diffusion gradients only are compared
based on experimental results it is observed that the full inclusion
of imaging gradients can be detrimental and there is slight
improvement with NoCroT over diffusion gradients only. It is
concluded that design of new diffusion gradient schemes via
optimization is necessary to decouple to the maximum extent
the effects of imaging gradients.

I. INTRODUCTION

The mathematical setup provided in the literature [1], [2]
that describes the effects of all gradients for Diffusion Tensor
Imaging (DTI) experiments is not adequate for the formulation
of optimization problems with improvement objectives of the
diffusion gradient scheme performance. The effects are rele-
vant when a small field of view, thus large imaging gradients,
is used. A concise framework is provided in this manuscript
that yields interesting conclusions about the DTI model after
the analysis of the experimental results.

The solution of the modified Bloch equation in [3] models
the effects of diffusion in pulsed gradient spin echo (PGSE) ex-
periment. The generalization to DTI experiments is expressed
by [1], [2]

S(G, t) = S0 exp

(
−γ2

∫ t

0

h(G(ζ)) D [h(G(ζ))]T dζ

)
.

(1)
Here G(·) = [ Gx(·) Gy(·) Gz(·) ] denotes the time course
of the magnetic field gradient vector, γ is the gyromagnetic
ratio of the proton, S denotes the signal intensity at each
pixel and S0 comes from the reference image obtained without
diffusion gradients. The time t is chosen to be TE , the echo
time. The vector valued function h(·) is given by

h(G, ζ) =
∫ ζ

0

G(ξ)dξ − 2u(ζ − τ)
∫ τ

0

G(ξ)dξ (2)

where τ is the time of the π pulse and u(·) denotes the unit
step function. It is important to note that calculation of h
involves the time course of all gradients [1], [4], [5] not only
the diffusion sensitizing ones.

The diffusion tensor in (1) is of rank two and both of the
arguments it operates on are always equal, thus it is a quadratic
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Alpay Özcan is with Biomedical MR Laboratory, Mallinckrodt Institute of
Radiology, Washington University in Saint Louis, School of Medicine, Box
8227, St. Louis MO 63110, USA. ozcan@zach.wustl.edu

form and is represented by 3×3 symmetric matrix. By treating
the set of symmetric matrices as a six dimensional vector
(sub)space, (1) can be written as a set of linear equations
between the m diffusion weighted measurements and the
representation of D, d ∈ IR6, with the choice of basis vectors
corresponding to the map

d = [d1, d2, d3, d4, d5, d6]T 7−→ D =




d1 d4 d6

d4 d2 d5

d6 d5 d3


 . (3)

By defining hi(·) = h(Gi(·)) with Gi(·) denoting the time
course of the gradients at the ith acquisition and p =
[ ln(S0)− ln(S1), . . . ln(S0)− ln(Sm)]T the equation is
written as

γ2 V d = p (4)

where V is
∫ t

0




h2
1x h2

1y h2
1z 2h1xh1y 2h1yh1z 2h1xh1z

...
...

...
...

...
...

h2
mx h2

my h2
mz 2hmxhmy 2hmyhmz 2hmxhmz


 dζ.

(5)

II. COMPONENTS OF V

The matrix V defined in (5) is a nonlinear function of
gradients. In order to distinguish the effects of diffusion and
imaging gradients in V , G can be written as a sum of its
diffusion and imaging parts G = GD + GI since their (time
axis) support does not intersect. The definition of h given in
(2) implies that h(GD +GI) = h(GD)+h(GI). Based on this
observation, V can be separated into three parts by expanding
(5), V = VD + VI + VC (see the top of the next page for the
definition).

Here, VD represents the effect of diffusion gradients, VI

is for imaging gradients and VC describes the cross terms
between the two types of gradients.

In the ideal case where the imaging and diffusion gradients
have rectangular shapes (rather than trapezoids) one can sep-
arate both imaging and diffusion gradients as a product of a
scalar function of time and a vector (not necessarily of unit
norm):

G∗(ξ) = β∗(ξ) g∗ = β∗(ξ) [ g∗x g∗y g∗z ] (6)

where the asterisk can be any of ro, pe, ss (read out, phase
encode, slice select) for imaging or D for diffusion gradients.
Define

µ∗(ζ) =
∫ ζ

0

β∗(ξ)dξ − 2u(ζ − τ)
∫ τ

0

β∗(ξ)dξ. (7)

to obtain from (2)

h(G∗, ζ) = µ∗(ζ) g∗ = µ∗(ζ) [ g∗x g∗y g∗z ]. (8)
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V =
∫ t

0




h2
x(G1D) · · · 2hx(G1D) hz(G1D)

...
...

h2
x(GmD) · · · 2hx(GmD) hz(GmD)


 dζ +

∫ t

0




h2
x(GI) · · · 2hx(GI)hz(GI)

...
...

h2
x(GI) · · · 2hx(GI)hz(GI)


 dζ

+ 2
∫ t

0




hx(G1D)hx(GI) · · · hx(G1D) hz(GI) + hx(GI)hz(G1D)
...

...
hx(GmD)hx(GI) · · · hx(GmD) hz(GI) + hx(GI)hz(GmD)


 dζ

= VD + VI + VC (9)

VC = 2
∫ t

0

µD




µro g1x µpe g1y µss g1z (µpe g1x + µro g1y) (µss g1y + µss g1z) (µss g1x + µro g1z)
...

...
...

...
...

...
µro gmx µpe gmy µss gmz (µpe gmx + µro gmy) (µss gmy + µss gmz) (µss gmx + µro gmz)


 dζ.

(10)

A. Calculation of VD

For ease of notation, denote giD by gi, then GiD(ξ) =
βD(ξ) gi. Using (7) and (8), VD in (9) can also be fac-
tored into a scalar time function and a matrix which is a
function of the diffusion gradient vectors. Define the vector
gi = [ gix giy giz ], let g = (g1, . . . , gm) denote the ordered
set of the diffusion gradient vectors then the expression for VD

in (9) and the definition (2) give

VD = b Vg (11)

where V(·) on the right hand side is the nonlinear map that
takes g to m× 6 matrix Vg:




g2
1x g2

1y g2
1z 2g1xg1y 2g1yg1z 2g1xg1z

...
...

...
...

...
...

g2
mx g2

my g2
mz 2gmxgmy 2gmygmz 2gmxgmz


 (12)

and b is calculated using (7) and (8):

b =
∫ t

0

(∫ ζ

0

βD(ξ) dξ − 2u(ζ − τ)
∫ τ

0

βD(ξ)dξ

)2

dζ

=
∫ t

0

µ2
D(ζ)dζ. (13)

For example, the scalar factor for the case of rectangular
diffusion gradient pulses is b = δ2(∆− 1

3δ) and for trapezoidal
pulses δ2(∆− 1

3δ)− 1
6δ t2rise + 1

30 t3rise where δ is the length
of the pulses, ∆ is the time between them, and trise is the
time for the gradients to reach a specified value.

B. Calculation of VI

During an experiment once the slice and image orientations
are selected, they do not change. This implies that the imaging
part of V , VI , has all its rows equal to each other in (9). The
time dependent imaging gradient vector GI can be written as a
linear combination of three unit vectors corresponding to read
out, phase encode and slice select directions. The coefficients
are scalar functions of time:

GI(ξ) = βro(ξ) gro + βpe(ξ) gpe + βss(ξ) gss (14)

By the linearity of h, (7), (8) and (14) one obtains:

h(GI , ζ) = µro(ζ) gro + µpe(ζ) gpe + µss(ζ) gss (15)

The calculation of VI , which only necessitates one row, is
accomplished by:
∫ t

0

[ µ2
ro µ2

pe µ2
ss 2 µro µpe 2 µpe µss 2 µro µss ] dζ.

(16)

C. Calculation of VC

VC can be computed in a straightforward manner using the
functions given in previous sections, especially (15). It consists
purely of the cross terms of the imaging and diffusion parts
of h. The calculations result in VC(g), shown in (10), as a
nonlinear function of diffusion gradients.

Note that there is no clear choice for the value of the phase
encoding gradient in the calculation of VI and VC .

III. CENTER SYMMETRIC DIFFUSION GRADIENTS:
NOCROT AND CROTO

The appearance of the cross terms can be eliminated by us-
ing the properties of the components of V and a specific orga-
nization of gradients. Equations (12) and (10) show that when
the sign of the diffusion gradients is changed, VD remains
the same, because Vg = V(−g), as opposed to the cross terms
matrix which changes sign, VC(−g) = −VC(g). Experiments
performed with center–symmetric diffusion gradients, i.e. with
the gradient set (g,−g) = (g1, . . . , gm

2
,−g1, . . . ,−gm

2
) will

result in:

γ2

[
(b Vg + VC(g) + VI)

(b V(−g) + VC(−g) + VI)

]
d =

[
p1

p2

]
. (17)

The sum and the difference of Eqs. 17 yield

2 γ2 (b Vg + VI) d = p1 + p2 (NoCroT) (18)
2 γ2 VC(g) d = p1 − p2 (CroTO). (19)

In this manner VC does not appear in (18), hence the
name ‘No Cross Terms’: NoCroT; in contrast to (19) which
consists of ‘Cross Terms Only’: CroTO. Since the center–
symmetric gradient pairs point to the same direction, the first
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necessary condition given in [6] for V to have full rank is
violated. The correct way to choose the center–symmetric
diffusion gradients is to first select 6 vectors that will ensure
the full rank condition on Vg [6] and then add in their
center–symmetric counterparts. This implies that the minimum
number of NoCroT diffusion gradients is 12. In that case
NoCroT, (18), is solved by matrix inversion and therefore d
is perfectly fitted to (p1 + p2)/2. In other words, the fit is to
the average of the two sets of measurements rather than to the
measurements themselves, which is equivalent to solving the
following inconsistent set of equations

γ2

[
VD + VI

VD + VI

]
d =

[
p1

p2

]
(20)

by least squares estimation. Therefore, the true residual error
is calculated based on (20) in the sequel.

Note that NoCroT is more robust than CroTO since p1 ' p2

implies that the propagated error will perturb highly the right
hand side of (19). Analysis of the data using CroTO verifies
this observation, there is an overwhelming number of negative
eigenvalues in the water phantom described in Section IV. One
limitation is that for the method to work properly, hardware,
specifically the gradient system, must be able to revert the
diffusion gradients exactly.

IV. EXPERIMENTAL RESULTS

First and foremost, the estimation procedures must work
properly for the simplest case for diffusion with known charac-
teristics, an isotropic sample. To test this case, a polypropylene
centrifuge tube by FisherBrand (Cat. No. 05–539–6) filled
with tap water at room temperature, with an inner diameter
at the slice of 2.7 cm was chosen. In this manuscript, a
combination of three different types of coefficient matrices,
V = VD + VI + VC , NoCroT (VD + VI ) and VD, with several
diffusion gradient schemes are presented.

The experiments were carried out on a 4.7 Tesla MR scan-
ner (Varian NMR Systems, Palo Alto, CA) with a gradient
system of bore size of 15 cm, maximum gradient strength
of 45 gauss/cm and rise time of 0.2 ms using a quadrature
birdcage coil (Varian NMR Systems, Palo Alto, CA) with
108/63 mm outer/inner diameter sizes. DTI data were obtained
using the standard spin echo multi slice sequence with in house
modifications that store all the relevant parameters, including
the timing and amplitudes of all the crusher gradients. The
images were 128×128 pixels with a field of view 64×64 mm2

and 1 mm slice thickness. The repetition time TR = 1 s,
echo time TE = 35 ms, ∆ = 18 ms, δ = 6 ms. All the
experiments were carried out consecutively after leaving the
sample in the scanner for approximately 12 hours to reach a
stable temperature.

Center–symmetric diffusion gradient schemes with 12 dif-
fusion gradient vectors were used to obtain data. The gradi-
ent schemes were constructed by appending to the gradient
schemes with 6 vectors cited in [7] their central symmetric
part: Tetrahedral, Cond6, Jones noniso (without the last vector)
renamed as Cond* because it yields to a Vg with a good

condition number, Jones (N = 6), Muthupallai, Downhill
Simplex Minimization (DSM), Dual Gradient and in addi-
tion Icosahedron (ICOSA6) scheme from [8]. A maximum
diffusion gradient strength of gdiff = 12 gauss/cm was used.
With boxcar approximation at maximum diffusion gradient,
the value of the coefficient is γ2 b g2

diff = 593.6115 s/mm2.
In house Mathematica R© (Wolfram Research, Champaign,

IL USA) code was used to compute components of V as
described in Section II using the parameter values written to
the hard disk by the pulse sequence. Integrals were computed
using trapezoidal shapes rather than rectangular ones. The
calculations included all the crusher gradients. In house written
Matlab R© (Mathworks, Natick, MA USA) programs were used
for the estimation of d at each pixel and graphical represen-
tation and maps of related results. Standard Matlab R©Image
Processing Toolbox R© routines, Sobel edge detection and
morphological reconstruction were used to detect the signal
region of the phantom in non-diffusion weighted images for
each gradient scheme. The edges were removed to obtain
region free of susceptibility artifacts and the intersection of
all regions was taken to obtain the circular area with 2022
pixels.

The estimation was done with non–weighted least squares
because of its speed and simplicity. In the computation of VC

and VI the phase encoding gradient value of 0 was selected
based on the observation that the eigenvectors show a bias
towards the orientation of the phase encoding gradient. It
should be clear that this choice does not bring a resolution
to the existing ambiguity.

Table I presents analysis results as mean±standard devi-
ation. The analysis was done by three different coefficient
matrices: V, NoCroT (VD + VI ) and VD which are shown
in respective rows. Exclamation points indicate the existence
of negative eigenvalues. Although mathematically there is no
restriction on the definiteness of D, negative eigenvalues have
no physical meaning. Cond6 and Tetrahedral schemes exhibit
negative eigenvalues with V , indicating high sensitivity to
perturbations of the coefficient matrices. The ratios of the
number of pixels with negative eigenvalues to the total number
of pixels are 0.00791 and 0.998 for Cond6 and Tetrahedral
respectively (nroi = 2022).

FA is the mean of the pixel fractional anisotropy index [9]
which should be close to zero because the sample is uniform
and isotropic. It is the lowest when all of the imaging
gradients are neglected from the calculations (row 3). The
standard deviation of fractional anisotropy does not change
drastically between the three methods but the values from
VD and NoCroT are much closer than the ones between V
and NoCroT. In brief, completely neglecting imaging gradients
provides the best precision for the fractional anisotropy.

λ̄i’s (10−5cm2/s) are the mean eigenvalues and their pre-
cision is consistently the best for NoCroT and the worst for
V. VD estimates larger eigenvalues (except λ̄1–icosahedron);
moreover, λ̄3 increases with decreasing number of components
of V (VD + VI + VC , VD + VI , VD). In that regard, NoCroT
is a better choice for the precision of the eigenvalues.
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TABLE I
SUMMARY OF ANALYSIS RESULTS

cond6 cond* dsm dualgr icosa jones6 muthup tetra

V !–! 0.109±0.0271 0.0884±0.0195 0.161±0.0243 0.606±0.0431 0.107±0.0203 0.107±0.0206 !–!

FA NoCroT 0.178±0.114 0.0669±0.0228 0.053±0.0175 0.0526±0.0183 0.101±0.0578 0.05±0.0165 0.0506±0.0167 0.103±0.0535

VD 0.171± 0.11 0.0639±0.0218 0.0506±0.0167 0.0502±0.0175 0.0964±0.0552 0.0477±0.0158 0.0483±0.016 0.0986±0.0511

V !2.94±0.277! 2.01±0.0778 1.91±0.0486 1.98±0.0543 3.84±0.254 1.9±0.0454 1.89±0.0486 !3.1±0.104!

λ̄1 NoCroT 2.18±0.231 1.95±0.061 1.91±0.0481 1.9±0.0523 1.97±0.125 1.88±0.0455 1.87±0.0466 1.96±0.102

VD 2.27±0.229 2.04±0.062 1.99±0.0492 1.98±0.0537 2.05±0.126 1.96±0.0467 1.95±0.0478 2.04±0.102

V !1.62 ±0.0653! 1.83±0.0614 1.8±0.0447 1.87±0.0553 1.55±0.0551 1.8±0.0451 1.79±0.0463 !2.92 ±0.105!

λ̄2 NoCroT 1.88±0.0714 1.83±0.0507 1.81±0.0402 1.8±0.0443 1.79±0.0471 1.79±0.0387 1.78±0.0393 1.78±0.0798

VD 1.97±0.0774 1.92±0.0519 1.9±0.0414 1.89±0.0458 1.88±0.0479 1.88± 0.04 1.86±0.0405 1.86±0.0811

V !0.852 ±0.33! 1.62±0.0516 1.6±0.0498 1.44±0.0616 1.02±0.0772 1.54±0.051 1.53±0.0494 !-0.373±0.123!

λ̄3 NoCroT 1.51±0.243 1.71±0.0572 1.72±0.0441 1.71±0.0501 1.62± 0.14 1.7±0.0419 1.69±0.0427 1.6±0.0999

VD 1.6±0.241 1.8±0.0581 1.81±0.0449 1.8±0.051 1.7±0.141 1.79±0.0426 1.78±0.0434 1.69±0.0999

V 1148±81.17 1102±64.12 1060±66.92 1042±63.21 975.1±66.1 1074±68.68 1070±64.76 852.3±62.1

χ̄ NoCroT 635.3±63.11 595.1±53.39 564.6±54.83 571.3±51.98 577.7±55.07 572.5±54.1 573.9±52.26 651.8±56.28

VD 635.3±63.11 595.1±53.39 564.6±54.83 571.3±51.98 577.7±55.07 572.5±54.1 573.9±52.26 651.8±56.28

χ̄ is the mean of the pixel residual error:

‖χ‖22 =
1
m

m∑

i=1

(Ŝi − S(vi d))2 (21)

where vi denotes the ith row of the coefficient matrix. It
depicts that there is an increase in the model matching error
when the imaging gradients are not dropped from the calcu-
lations. The last two rows of the table are identical because
the calculations for VD are equivalent to solving NoCroT (20)
with VI = 0. Since all the rows of VI are equal and the
measurements are the same for both methods, the residuals
defined in (21) do not change.

In conclusion, while the inclusion of all imaging and cross
terms creates great disturbances and gives poor results for the
estimation process, the performance indices favor NoCroT.

V. CONCLUSION

In the translation of diffusion NMR experiments to MR–
DTI, analytical expressions for the effects of imaging gradients
exhibit ambiguities about the choice of the phase encoding
gradient values to use in the computations. Center–symmetric
gradient schemes, at least in theory, make it possible to use
no cross terms (NoCroT) in the calculations, thus eliminating
the impact of imaging gradients.

When three estimation methods, all gradients (V ), NoCroT
(VD +VI ) and diffusion gradients only (VD) are compared on
the same experimental data obtained from a uniform isotropic
phantom, it is observed that the full inclusion of imaging
gradients to the calculations can be detrimental. Moreover,
there is only slight improvement with NoCroT over diffusion
gradients only. This is unexpected since more comprehensive
models including all the gradients should give better results.

It is inconceivable that these drastic changes are due
only to the uncertainty in phase encoding gradients. Such

sensitivity would make MR–DTI unrealizable. Despite the
unavoidable factors such as noise, gradient reversal mismatch
and inhomogeneities that are difficult to measure and model,
every possible theoretical incentive is incorporated into the
process: exact analytic expressions of the coefficient matrices
and the special gradient selection that suppresses the cross
terms. Therefore the next attainable goal is to design new
diffusion gradient schemes that will improve the robustness
by decoupling to the maximum extent the effects of imaging
gradients. This is the subject of the companion paper [10].
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