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Abstract—The linear algebra framework for MR–DTI intro-
duced in the companion manuscript is expanded to a normed
space structure. The issues originating from the inclusion of
imaging gradients into the MR-DTI model to obtain a fuller
description are tackled by the optimization theory. A sample
independent, geometric objective function based on matrix norms
is defined. A parametrization of feasible diffusion gradient sets is
presented so that the optimization can be carried out by making
sure that the coefficient matrix for the estimation equations
has full rank. The experiments are carried with the optimal
gradient schemes. There are significant improvements in terms of
model matching error and the lowering of the difference between
eigenvalues calculated with or without the imaging gradients.

I. INTRODUCTION

In the companion paper [1] analytic expressions for different
components for the estimation of the diffusion matrix, D
(represented by d ∈ IR6) in MR-DTI, are given as functions
of the diffusion gradient sets, g, and imaging gradients:

γ2 (b Vg + VC(g) + VI) d = p. (1)

Here VI , is for imaging gradients, VD
.= b Vg for diffusion

gradients and VC(g) represents the cross terms.
In this manuscript, an optimization problem in the diffusion

gradient space is tackled to decouple the effects of the imaging
and diffusion gradients. This is accomplished in a geometric
and sample independent setup.

II. DEFINITION OF THE OPTIMIZATION PROBLEM

A. Main Objective

The objective is to minimize the difference between the
eigenvalues estimated with and without the incorporation of
the imaging gradients. The main idea originates from seeing
(1) as a matrix perturbation of VD, V = VD + (VI + VC):

Theorem 1 ([2]): Let A ∈ IRm×m be nonsingular and let
Ã = A + E be a perturbation of A. For p ∈ IRm let Ad = p
and let ‖ · ‖ be an operator norm. If there is a vector d̃ such
that Ã d̃ = p, then

‖d− d̃‖
‖d̃‖ ≤ ‖A−1E‖. (2)

The theorem provides in (2) an upper bound on the relative
error between the entries of the diffusion matrices obtained
from V d̃ = p and VD d = p. The bound is

‖d− d̃‖
‖d̃‖ ≤ ‖V −1

D (VI + VC)‖. (3)
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The appropriate norm to adopt for Theorem 1 is the Frobenius
norm because for a symmetric matrix D with its representation
d ∈ IR6, there is a relationship with the eigenvalues:
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The compatible operator Frobenius norm is given by
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with rσ as the spectral radius of the matrix and

R =
[

I3 0
0 2I3

]

where I3 is 3 × 3 identity matrix. The Frobenius norm
possesses also this important property:

Theorem 2 ([2], p. 205): Let d and d̃ ∈ IR6 represent two
symmetric n× n matrices with eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λn and λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n respectively. Then

[
n∑

i

(λi − λ̃i)2
] 1

2

≤ ‖d− d̃‖R.

The equations (3), (4) and Theorem 2 can be combined to
put a bound on the relative error of eigenvalues:
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≤ ‖V −1
D (VI + VC)‖R. (6)

The optimization algorithms will search for diffusion gradients
that will minimize the right hand side of (6) in order to
obtain schemes that are insensitive to neglecting the imaging
gradients from the estimation process. It is a geometric search
for schemes that are optimally ‘bloomed’, ‘stretched’ and
‘oriented’ with respect to the fixed imaging gradient vectors.

Note that the left hand side of the inequality (6) is unknown
before the measurements and the right hand side is solely
determined by the gradient directions, magnitudes and time
course, thus is completely independent of measurement values.
Since the expression on the right hand side does not depend on
the diffusion matrix (thus neither to its eigenvalues nor to its
eigenvectors), it is also completely detached from the proper-
ties of the diffusion at any given location. This is an extremely
sound choice for an objective function which does not have
the sample dependence (tissue properties, orientation, location
in the sample etc.) of the existing optimization criterions in
the literature [3], [4], [5], [6], [7].
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(7)

The advantage of the formulation that separates the timings
and strengths of the gradients (e.g. VD = b Vg) in [1] becomes
now clear. When the gradient pulses are approximated by
boxcar functions, b defined in [1] (different than the definition
used in the literature) is a factor for the timing of the gradient
pulses and is independent of their strength. The optimization
problem, including the constraints, can be posed and carried
on the diffusion gradient sets without involving their timings.

B. Parametrization of the Feasible Search Space

Regardless how the estimation is done, with or without the
incorporation of the imaging gradients, the set of diffusion
gradients g has to have the corresponding Vg, i.e. VD, full
rank [8]. This is also in line with the conditions of Theorem 1.
In addition, the full version of Theorem 1 in [2] asserts that
provided VD is nonsingular, if ‖V −1

D (VI +VC)‖ is small then
the sum of all three matrices, V, will also be nonsingular.

Therefore the main constraint for the optimization problem
is to guarantee the full rank condition. A parametrization is
necessary to describe the set of admissible diffusion gradient
vectors. It can be shown that when the set of diffusion gradient
vectors

g =




g1x g1y g1z
...

...
...

gmx gmy gmz


 ∈ IRm×3

is transformed to ḡ = g P , where P is a 3 × m matrix, Vg

transforms to
Vḡ = V(gP ) = Vg M. (8)

For m = 6, M is a function of P given in (7) with
the property that det(M) = (det(P ))4. This implies that
det(Vḡ) = det(Vg) (det(P ))4. In conclusion, Vḡ will be
nonsingular if and only if P is, thus P is the parameter that
describes the feasible gradient schemes.

The origin set, g, acts like a ‘pivot’ and new admissible
schemes are discovered by changing P. Since P must be
nonsingular, it has a polar decomposition, P = U Q, where U
is an orthogonal matrix (‘angle’) and Q is a positive definite
matrix (‘magnitude’) [9]. In turn Q can be parametrized by
q ∈ IR6 using Cholesky decomposition:

Q = Q̂T Q̂ =




q1 q4 q6

0 q2 q5

0 0 q3




T 


q1 q4 q6

0 q2 q5

0 0 q3


 ,

and the orthogonal part of the parametrization is confined to
the set of rotation matrices using the Euler angles (ψ, θ, φ) ∈

[0, 2π]× [0, π]× [0, 2π] = Ω

U =




cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1


 ∗




1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)







cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 .

Unfortunately, it is not possible to cover all the feasible
diffusion gradient sets starting from a single good one. There
are gradient schemes such that g′ = g P does not hold,
therefore the parametrization is limited only to the congruence
class of the pivot. For example, the following sets of gradients:
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(9)
are not obtainable from one another. Although M = V −1

ġ Vg̃

exists, there is no P that provides M as in (7). In consequence,
there is no way to find a global minimizer starting from a given
pivot scheme using a linear parametrization.

C. Hardware Constraints

Intuitively, if VD has large entries, the effects of VI and
VC will be reduced. Clearly, without the implementation of
the constraints reflecting the hardware limits, the solution of
the minimization problems tends towards stronger diffusion
gradients to make VD dominant. The main hardware constraint
is the upper limit for the strength of the diffusion gradients,
Gmax, imposed either by the user or by the system. The
constraint, which is incorporated in the objective function
below (10), guarantees that the limit is not violated.

D. Objective Function

At the heart of each optimization problem lays the choice
of an adequate objective function. The analysis of the previous
sections provided a foundation for minimizing the estimation
differences. In addition to those, the perturbation of the
measurements (e.g. due to noise) are handled by adding the R–
norm condition number of VD to the objective for increasing
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the robustness. The objective function is

10‖(b V(gP ))−1(VI + VC(gP ))‖R

+ b2 ‖V(gP )‖R

‖V −1
(gP )‖R

+ 100
∣∣∣∣ max
i=1,···,m

‖gi P‖1 −Gmax

∣∣∣∣ . (10)

The last portion is the hardware constraint that confines the
diffusion gradients to a cube. The choice of the weights is
accomplished heuristically by trial and error. The search is
performed over the parameter variables, (ψ, θ, φ, q) ∈ Ω×IR6,
that are the arguments of the matrix function P (ψ, θ, φ, q) as
in Section II-B.

III. EXPERIMENTAL RESULTS

The experimental setup is exactly the same as in [1].
Each of the diffusion gradient schemes given in [1] with six
vectors were taken as the pivot set g in the objective function
(10) above and standard Matlab R© Optimization Toolbox R©
(Mathworks, Natick, MA USA) routine fmincon was used.

The initial condition supplied to the numerical routines
plays a crucial role in the convergence of the algorithm. For
each pivot, several initial conditions obtained by changing
Euler angles in the multiples of π

4 rad, equivalent to rotating
the pivots, were evaluated. After the algorithm converged for
each case, the best of the optimal solutions was picked up.
The ‘magnitude’ of the pivot was left untouched having in
mind from Section II-D that the optimization routines will
easily deal with the strengths of the gradients. For Muthupallai,
Downhill Simplex Minimization (DSM), Dual Gradient and
Tetrahedral the initial condition (0, 0, 0) has resulted in the
best cost. Table I summarizes the costs at different stages of
the procedure. The first row gives the optimal values after
the algorithm is run and the last two rows are for the initial
condition and the pivot cost values. The scheme Jones6 has
the lowest cost, followed by Dual Gradient, Muthupallai and
DSM.

TABLE I
SUMMARY OF COSTS FOR OPTIMIZED SCHEMES

cond6 cond* dsm dualgr icosa jones6 muthup tetra

Opt. 25.35 5.177 4.546 4.348 9.437 4.241 4.41 12.53

Initial 40.64 20.64 13.81 34.48 21.71 12.96 19.81 45.33

Pivot 50.18 5.921 13.81 34.48 35.13 5.085 19.81 45.33

The center symmetric counterpart of the six optimal gradient
vectors is added to the gradient scheme to follow NoCroT
protocol and experiments were carried out on the isotropic
phantom of [1]. Table II shows that the difference between
the eigenvalues obtained by incorporating all the imaging
gradients and neglecting them goes down in the optimal
schemes with the exception of Dual Gradient scheme. This
proves that the optimization goal has been reached.

Although not directly addressed by the objective function,
it is important to see how the performance of the estimation
reported in [1] has changed. Table III represents estimation
results for the eigenvalues and model matching error as

TABLE II
DIFFERENCE BETWEEN THE EIGENVALUES FROM VD AND V , λi − λ̄i

!cond6 cond* dsm dualgr icosa jones6 muthup !tetra!

Reg. !-0.668 0.032 0.0857 0.00234 -1.78 0.061 0.0622 -1.06

Opt. -0.178 0.0149 0.0787 0.0286 -0.219 0.0592 0.0604 -0.561

Reg. !0.342 0.0949 0.0999 0.0227 0.325 0.0745 0.0739 -1.06

Opt. 0.202 0.0719 0.089 0.0528 0.247 0.0714 0.0707 -0.581

Reg. !0.751 0.185 0.203 0.358 0.685 0.247 0.244 2.06

Opt. 0.433 0.205 0.154 0.114 0.401 0.166 0.162 1.11

mean±standard deviation. Exclamation point indicates the ex-
istence of negative eigenvalues. The analysis is carried by three
different coefficient matrices: V, NoCroT (VD + VI ) and VD

which are shown in respective rows. Only optimal Tetrahedron
scheme exhibits negative eigenvalues with V. The ratios of the
number of pixels with negative eigenvalues to the total number
of pixels 0.0302 (nroi = 2022). This is much lower than the
ones reported for the original Tetrahedron scheme. Note that
the negative eigenvalues have completely disappeared from the
optimized Cond6 scheme. These observations demonstrate that
robustness has improved significantly.

FA is the mean of the pixel fractional anisotropy index [10],
which should be close to zero because the sample is uniform
and isotropic. For the inclusion of the imaging gradients, i.e. V,
optimized schemes show significant improvements compared
to the non–optimal schemes given in [1]: they are consistently
lower. However, for NoCroT and VD most of the schemes
worsen slightly. FA increases for Dual Gradient scheme and
decreases for Icosahedron noticeably, there is a slight increase
for DSM and Muthupallai but Jones6 barely changes. As
in [1], FA is the lowest when all the imaging gradients are
neglected from the calculations (row 3).

The standard deviation of fractional anisotropy do not
change drastically between the three methods but the values
from VD and NoCroT are much closer than the ones between
VD and NoCroT as also observed in [1]. The standard devi-
ation for the optimal schemes increases slightly for all three
methods compared to non–optimal ones i.e. there is a decrease
in precision after optimization. In brief, although FA values
show improved results for the inclusion of all gradients, their
performance for the remaining methods is worst than the non–
optimal schemes.

λ̄i (10−5cm2/s) are the mean eigenvalues. Overall, the
eigenvalues obtained from the optimal schemes are larger.
The precision is better for most of the optimal versions,
specifically for DSM, Muthupallai and Icosahedron. For the
rest, it is slightly worst or unchanged. Their precision follows
a similar pattern as in the regular schemes: it is the best for
NoCroT and the worst for V consistently. Very similar to
non–optimal schemes, VD estimates larger eigenvalues. For
optimized schemes, it can not be asserted that NoCroT is a
better choice for the precision of the eigenvalues since the
performance fluctuates between the schemes.

χ̄, the mean of the pixel residuals [1], is the most impor-
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TABLE III
SUMMARY OF ANALYSIS RESULTS FOR OPTIMIZED SCHEMES

cond6 cond* dsm dualgr icosa jones6 muthup tetra

V 0.315±0.081 0.127±0.034 0.0772±0.0192 0.0985±0.0289 0.263±0.0462 0.0854±0.0198 0.0842±0.0203 !–!

FA NoCroT 0.138±0.0729 0.0701±0.0256 0.0545±0.0175 0.0733±0.0264 0.0762±0.0301 0.0545±0.0184 0.0537±0.0174 0.148±0.0719

VD 0.133±0.0693 0.0682±0.0249 0.0521±0.0169 0.0713±0.0257 0.0754±0.029 0.0509±0.0173 0.0516±0.0168 0.145±0.0703

V 2.26±0.207 1.95±0.061 1.86±0.0453 1.95±0.0661 2.21±0.109 1.88±0.0461 1.89±0.0462 !2.68±0.194!

λ̄1 NoCroT 2.01±0.135 1.92±0.0625 1.87±0.0449 1.94±0.0649 1.93±0.071 1.87±0.0471 1.88±0.0452 2.08±0.162

VD 2.08±0.135 1.97±0.0613 1.94±0.0457 1.98±0.0653 1.99±0.0699 1.94±0.0477 1.95±0.046 2.12±0.162

V 1.64±0.0993 1.77±0.0674 1.76±0.0416 1.8±0.0578 1.61±0.107 1.78±0.0451 1.78±0.0442 !2.42±0.176!

λ̄2 NoCroT 1.77±0.0975 1.79±0.0476 1.77±0.0386 1.8±0.0495 1.79±0.046 1.78±0.0385 1.79±0.038 1.8±0.098

VD 1.85±0.105 1.84±0.0479 1.85±0.0395 1.85±0.0501 1.86±0.0481 1.85±0.0387 1.85±0.0387 1.84±0.0988

V 1.17±0.133 1.52±0.0772 1.6±0.0448 1.61±0.0647 1.32±0.0638 1.59±0.0482 1.6±0.0483 !0.487±0.248!

λ̄3 NoCroT 1.53±0.139 1.67±0.0563 1.68±0.0413 1.68±0.0556 1.66±0.0603 1.68±0.0437 1.7±0.0419 1.55±0.133

VD 1.6±0.137 1.72±0.0577 1.75±0.0418 1.72±0.0554 1.72±0.0627 1.76±0.0433 1.76±0.0423 1.59±0.133

V 791±60 697±55.4 966±64.8 559±52.1 1050±76.5 946±62.9 886±58.6 411±53.4

χ̄ NoCroT 438±51.2 387±50.4 510±54.4 305±48.5 537±58.1 502±53.6 470±50.7 244±47.6

VD 438±51.2 387±50.4 510±54.4 305±48.5 537±58.1 502±53.6 470±50.7 244±47.6

tant criterion since it measures the adequacy of the model
matching. The addition of the R–norm condition number to
the objective function assisted in the significant reduction of
the model matching error in the optimal schemes. Despite that,
it should be noted that the model matching error for V, that
theoretically encompasses all the effects of the gradients, is
still larger compared to the less ‘correct’ models.

IV. CONCLUSION

By expanding the linear algebraic framework of [1] to
a normed vector space, a sample independent, robust and
geometric optimization problem encompassing the hardware
limitations and guaranteeing the feasibility of the diffusion
gradient vectors was defined. The program succeeded in
finding optimal diffusion gradient schemes that reduced the
difference between eigenvalues obtained from the full incor-
poration and full exclusion of the imaging gradients in MR–
DTI estimation, thus making the latter justifiable even under
the conditions where the imaging gradients have high values.
More importantly, the data obtained using the optimal schemes
fit the DTI model much better than the non–optimal schemes.

When the results of the estimation is analyzed, however,
there is a slight increase in the fractional anisotropy for the
optimal schemes in general. One would expect that with better
model matching the fractional anisotropy should get closer to
zero for an isotropic sample. Considering the fact that all the
experiments (with non–optimal and optimal schemes) were
carried consecutively i.e. under the same conditions, this issue
must be addressed by investigating new strategies for gradient
schemes based on the data obtained with large number of
diffusion gradients.

After the investigation of the effects of all gradients on the
eigenvalues, the natural next step is the investigation of the
eigenvectors which is essential for fiber tracking. The choice

of an objective function that will be independent of sample
properties (e.g. fiber orientation) is a significant challenge.

The linear parametrization of the feasible set of diffusion
gradient schemes results in a disconnected description so the
optimal solutions are limited to the congruence classes. The
proof of the fact that the feasible set is a connected manifold
is beyond the scope of this manuscript. If this can be shown
then a nonlinear parametrization will provide the possibility
of finding a global optimizer.
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