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Abstract— Diffusion Tensor Imaging (DTI) provides unique
information about the underlying tissue structure of brain white
matter in vivo, including both the geometry of fiber bundles as
well as quantitative information about tissue properties as char-
acterized by measures such as tensor orientation, anisotropy,
and size. Our objective in this paper is to evaluate the utility of
shape representations of white matter tracts extracted from DTI
data for classification of clinically different population groups
(here autistic vs control). As a first step, our algorithm extracts
fiber bundles passing through approximately marked regions
of interest on affinely aligned brain volumes. The subsequent
analysis is entirely based on the geometric modeling of the
extracted tracts. A key advantage of using such an abstraction is
that it allows us to capture invariant features of brains allowing
for efficient large sample size studies. We demonstrate that with
the use of an appropriate representation of the tract shapes,
classifiers can be built with reasonable prediction accuracies
without making heavy use of the spatial normalization machin-
ery needed when using voxel based features.

I. INTRODUCTION

Neuroimaging researchers increasingly rely on diffusion
tensor imaging (DTI) for new insights into the tissue mi-
crostructure and organization of brain white matter in vivo.
DTI can provide information about the axon bundles of the
white matter such as preferred orientation, information about
local tissue structure using properties of tensors at each
voxel. Using these tensors at each voxel fiber bundles are
extracted using various techniques like solving stream-line
equations [1], clustering [2], monte-carlo based methods [3].
Typically fiber bundles are traced from seed points in regions
with anatomical interest. Most approaches to group analysis
in the clinical DTI literature have relied on voxel based
morphometry (VBM) like approaches which require com-
putationally expensive non-linear diffeomorphic registration
which can introduce artifcats in connectivity structures.

Recent advances have been made in using tract based
morphometry (TBM) in which they abstract away from
voxels and work in the space of streamlines [4], [5]. The
main challenge with TBM as mentioned in their paper is the
requirement of registering tracts across subjects with non-
linear deformation that might change the actual anatomical
significances of the tracts. Using shape representations of
tracts can alleviate some of the problems in TBM. [6]
presented a shape based normalization and provided evidence
for tangible improvements in statistical power. Tract shape
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modeling has also been used to segment out corresponding
region specific tracts across subjects without requiring “reg-
istration” of seed points used in tractography [7]. All these
studies indicate the power of using shape representations
of tracts for DTI group analysis. Such geometric modeling
of tracts has been argued to be able to account for errors
in normalization [8]. Such techniques also offer a moderate
level of invariance to quality variations in the low level
data (e.g., different scanning parameters) common in multi-
center studies. This is indeed attractive as it can open doors
to analyze larger datasets (possibly acquired on different
scanners) thus increasing the generalizability of statistical
conclusions. Partly motivated by these new results, in this
paper we seek to make use of the tractography data in
the setting of supervised learning in building a two-class
predictor where we address the following question:

1) Can the shapes of tracts be used to classify autistic
subjects from controls without requiring tract-tract
registration?

To study this question we use white matter tracts seeded
in the splenium of the corpus callosum. Corpus callosum
has been found to be important in connection with autism
([9], [10]) and pathways in this region have a well known
anatomy [7]. Using support vector machine (SVM) as a
binary classifier and histogram based shape representation
of the tracts we are able to obtain reasonable prediction
accuracy of upto 75% with cross-validation. A schematic
overview of our classification system is shown in Fig. 1. The
subjects are first aligned using simple affine transformations.
The fiber bundles passing through seeds identified in the
splenium (see Fig. 2) are then aligned using the affine
parameters. We build histogram representations of these fiber
bundles using 3D version of shape context [11]. To avoid
over-fitting and improve classification accuracies non-linear
principal component analysis (PCA) ([12]) with histogram
intersection kernel [13] is used to project the bins into a
low-dimensional feature space. These projections are then
input to SVM as feature vectors for binary classification.

II. METHODOLOGY

A. Data Pre-processing

The DTI data from 73 male subjects were used in this
study including
• 41 subjects with high functioning autism spectrum

disorders.
• 32 control subjects matched for age, handedness, IQ,

and head size.
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Fig. 1. Schematic overview of the shape based classification system. Sub-
jects are registered to a template using affine transformations. These affine
transformations are used to align the tracts passing through the splenium.
The tracts are represented using 3D shape context. These histogram based
feature vectors are projected into a low dimensional space using non-linear
PCA and classified using binary SVM.

Since brain shapes (and hence shapes of tracts) can be
affected by factors like age, head size etc., the control
subjects were matched for age, handedness, IQ and head
size with those of subjects with autism.

Tractography in aligned space tends to suffer from com-
pounding tensor interpolation errors. Hence tracts were ex-
tracted in the native space and were then aligned using affine
transformations. A second order Runge-Kutta streamline
algorithm with TENsor Deflection (TEND) [1] was used to
extract the tracts. This gives more robust tracts compared to
other streamline algorithms because it uses the entire tensor
at each voxel to “deflect” the tracts in contrast to just using
the major eigen vector. Fig. 2 shows some sample tracts
passing through the splenium for two subjects. The alignment
parameters were obtained as follows.

Fig. 2. Sample tracts (blue) passing through splenium of the corpus
callosum for two subjects.

The DTI data from a 16 year old control subject was
used as an initial template. The fractional anisotropy (FA)
map for this subject was aligned to the MNI-152 white
matter prior probability map using an affine transformation
and mutual information based cost function with 2mm
isotropic resolution over a 91 × 109 × 91 matrix. The FA
maps for the other 72 subjects were aligned to this single
subject template using a 12-parameter affine transformation
with FLIRT (http://www.fmrib.ox.ac.uk/fsl/).
The aligned FA maps were then averaged to create an FA

template. The FA maps for each subject were again aligned
to this template using affine transformation. This secondary
normalization step reduced the potential bias issues of using
a single subject as a template.

After briefly describing the classification framework in the
following section, we explain the feature extraction.

B. Binary Support Vector Classifier

Support vector machines [14] have demonstrated empirical
superiority with many theoretical guarantees on their gen-
eralization capacity among pattern classification algorithms.
Given labeled training data of the form {(yi,xi)}Ni=1, with
yi ∈ {−1,+1}, xi ∈ Rn the algorithm finds a hyperplane
w · x− b = 0 by minimizing classification error while max-
imizing the margin using “boundary examples” or support
vectors as:

argmin
w,b

1
2
‖w‖2 + C

∑
i

ξi (1)

such that: yi(w · xi − b) ≥ 1− ξi, ∀i = {1, 2, . . . , N}

where w is the normal vector, b
‖w‖ is the offset from origin

and ξi are the slack variables. Using Langrange multipliers
the following dual formulation is maximized so that the
actually classification can be done by computing dot products
with only support vectors:

argmax
α

W (α) =
N∑
i=1

αi −
1
2

∑
ij

αiαjyiyjxTi xj (2)

subject to: 0 ≤ αi ≤ C and
∑

αiyi = 0

where C(> 0) is the tradeoff between regularization and
constraint violation. Once we obtain the optimal alpha values
(α) the decision function is sign(h(x)), where:

h(x) =
m∑
l=1

αlylxTxl + b (3)

where {xl}ml=1 is the set of support vectors. One of the key
design aspects in using SVMs is good feature extraction,
i.e. effective representation of x for the data. It is even
more crucial with medial data where the number of training
examples is usually orders of magnitude low compared to
typical machine learning tasks. The goal is to keep the
dimensionality of x low while retaining the most useful
information to separate the two classes. Hence we use robust
histogram based representation of the tract data. To keep the
dimensionality low we perform non-linear principal compo-
nent analysis using histogram intersection kernel [13]. The
following two sections describe the histogram representation
and non-linear PCA respectively.

C. 3D Shape Context

Typically features used for classification tasks in brain
imaging have been raw voxel-level measurements. For each
subject all voxels with their values are used as features
with some simple preprocessing (like down-sampling [15])
to more complex processing like segmentation using dis-
crimination and robustness measures (DRM) in [16]. Spatial
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(a) (b)

Fig. 3. Shape context. Demonstration in 2D for ease of understanding.
(a) The log-polar binning used in 2D shape context [11]. Sample 2D
streamlines are shown as dotted blue curves. Counts for outermost radial
bins are also shown. By reading the bins in the order pointed by the red
curve in (a) we obtain the histogram in (b).

consistency cues are emphasized in a typical feature selection
process. They have been used both explicitly and implicity
[17]. All of such approaches assume a nearly perfect nor-
malization step since the feature values do not encode any
high-level information.

The motivation for our feature extraction is to use the
progress made in streamline tractography. By using tracts
we are in essense using anisotropic spatial prior in extracting
features from DTI data. As mentioned earlier we need good
shape representation of tracts that can capture the differences
between the two classes. Since we do not expect the subjects
to be perfectly aligned, for each subject we build a “context”
of the tracts passing through the splenium (see Fig. 2). This
is based on the 3D extension of 2D shape context, a very
successful descriptor used for shape matching for object
recognition [11]. We divide the 3D volume into azimuthal-
log-polar bins and count the number of tract control points
in each bin. Fig. 3 illustrates the idea in 2D for ease of
understanding. Fig. 4 (a) shows some sample tracts of a
subject with a sample 2D version of binning-frame centered
at the splenium. Fig. 4 (b) shows the histogram representation
for the tracts of that subject. Using medium resolutions (10◦

bins for azimuthal and polar angles and about 20 bins for
logspace radii) helps us cope with slight misalignments since
the histograms capture tract control point distributions of
tracts which are high-level features as opposed voxel-level
features. Such geometric modeling of tracts has been argued
to be able to account for errors in normalization [8]. There
they use “continuous medial representation (cm-rep)” of the
white matter tracts for performing tract based spatial statis-
tics (TBSS) [18]. Histogram based shape modeling offers
attractive advantages both in robustness of matching and also
computational efficiency [13]. As described in the follow-
ing section histogram based features allow using histogram
intersection kernel to perform efficient non-linear principal
component analysis. To our best knowledge, ours is the first
effort to study such histogram based modeling of DTI feature
extraction in a supervised classification framework.

D. Non-linear PCA using Intersection Kernel

The dimensionality (n) of the features (x) used for a clas-
sification influences the complexity of the learnt classifier.
The higher the dimensionality the more complex a classifier
can be. Even though complex classifiers can provide higher

(a) (b)

Fig. 4. (a) Sample tracts passing through the splenium. A sample 2D
version of binning-frame is centered at the splenium. (b) The histogram
representation for the tracts.

classification accuracies they tend to over-fit the data and lose
the generalization ability, indicated by decreased prediction
accuracies with cross validation. This is referred to as “curse
of dimensionality” which states for a given sample size of
training data there is a maximum number of features above
which the performance of the classifier decreases. A practical
heuristic is to upper bound the dimensionality as n ≤ N

10
where N is the number of training samples. There are several
ways to reduce the dimensionality of the feature space. By
using 10◦ bins for azimuthal and polar angles and about
20 bins for logspace radii our histogram representation has
12, 960 bins.

Principal component analysis (PCA) is a dimensionality
reduction technique used to select the “basis” features by
finding most uncorrelated features. The set of basis features
can be obtained by solving for eigen values of the covariance
matrix of the data {xi}Ni=1[19]. That is one has to solve:

λv = Cv, where C =
1
N

N∑
i=1

xixTi (4)

where v is the matrix of eigen vectors and λ is the diagonal
matrix with eigen values. By selecting the top L largest
eigen values the dimensionality can be reduced to L. In
some cases where the correlation between features might be
high, the above described linear PCA is not powerful enough
to reduce the dimensionality. There are several non-linear
extensions to perform component analysis like using Hebbian
networks, multi-layer perceptrons etc. [20]. But many of
those techniques are quite slow. [12] introduced non-linear
extension of PCA using “kernel trick” where they replace
the dot product in Eq. (4) with a kernel that can simulate
dot product in a high-dimensional mapping of the data. The
additional technical details of centering the data points before
computing the kernel matrix can be found in [12]. We use
histogram intersection kernel to compute the kernel matrix.
The intersection kernel between two data points is given as:

k(x, z) =
n∑
i=1

min(x(i), z(i)) (5)

Using top 6 eigen values we project most histograms onto a
6 dimensional feature space.
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Fig. 5. (a) Classifier output (h(x)− b, Eq. (3)) values for the two classes.
The thick line is the classification boundary and the dotted lines are the
margins. Values above the thick line indicate autism and those below indicate
control subjects. Examples inside the margins are harder examples. (b) ROC
curve shows that our classifier can perform reasonably well with an area
under curve (AUC) of 0.7645. Average specificity and sensitivity is 71.88%.
The values are estimated using leave-one-out cross validation.

III. EXPERIMENTAL EVALUATION

Since we have only 73 examples we evaluate our classifier
performance using cross-validation scheme. In a k fold cross-
validation, the dataset is partitioned into k subsets and each
time k−1 samples are used for training and 1 for testing. The
process is iterated k times until all the examples are tested
once. The prediction accuracies over test subsets are then
averaged to report the overall performance of the classifier.
The measures reported using cross-validation scheme usually
have more statistical significance. We perform leave-one-out
cross-validation where k = 73. That is the evaluation is done
73 times each time using 72 examples for training and 1
example for testing until all the examples are tested. The
average accuracy over 73 folds is 75.34% with specificity and
sensitivity of 71.88%. The classifier output values and the
corresponding receiver operating characteristic (ROC) curve
are shown in Fig. 5. The average area under curve (AUC) is
0.7645.

IV. DISCUSSIONS AND FUTURE WORK

Applying machine learning techinques for brain imaging is
attracting a significant interest of researchers [21]. Predictors
can assist doctors and radiologists to diagonise diseases cost-
effectively and efficiently. This paper presents an effort to
apply tractography data of DTI to build a binary classifier
with resonable prediction accuracy. Tractography data is
usually based on anatomical regions of interest. We intend
to include tractography data from other anatomically relevant
regions for autism like temporal lobe (arcuate fasciculus) to
achieve higher accuracies. Autistic patients have problems in
understanding language and arcuate fasciculus is thought to
be having pathways between regions involved in language
understanding. We also intend to work with larger datasets
since shape based representations can permit using data from
multiple labs more effectively.
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