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Abstract- In recent years, Breast Microwave Imaging (BMI) 
has shown its potential as a promising breast cancer detection 
technique. This imaging technology is based on the electrical 
characteristic differences that exist between normal and 
malignant breast tissues at the microwave frequency range. A 
promising image formation technique for BMI radar based 
approaches is wavefront reconstruction. In this approach, the 
image quality and execution time of this image formation 
technique is strongly affected by the interpolation method that 
is used. In this paper, a performance study between three 
popular interpolation techniques, nearest neighbor, linear and 
cubic splines, for breast microwave radar imaging is presented. 
The performance of the evaluated techniques was assessed 
using numeric phantoms obtained from Magnetic Resonance 
Imaging (MRI) data sets. The results of this study indicate that 
linear interpolation techniques are the most suitable choices 
based on their computational cost, and the focal quality and 
signal to noise of their resulting images.  

I. INTRODUCTION AND MOTIVATION 

   During the last decade, the use of microwave techniques 
as a complimentary tool for breast cancer detection has been 
proposed [1]. The use of microwaves for breast imaging 
applications was motivated by the dielectric properties 
differences between healthy and malignant breast tissues 
[2]. Breast microwave imaging techniques are based on the 
use of the diffracted and reflected fields produced when a 
breast structure is irradiated using a microwave waveform to 
form an image.  One of the most promising microwave 
technologies for breast cancer detection is Breast 
Microwave Radar Imaging (BMRI). Similar to conventional 
radar applications, BMRI systems irradiate an 
electromagnetic waveform into the scan area. The 
backscattered signals from the different breast structures are 
then recorded, processed and then displayed so they can be 
visualized and interpreted. 

 A common way to collect BMRI is performed along 
circular scan geometry in order to better suit the geometry 
of the breast region. As discussed in [3], the reflections from 
the different breast structures form non-linear signatures. 
This fact makes difficult to determine the correct 
dimensions and locations of the different scattering  
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structures present in the scan area. In order to properly 
visualize the targets reflections, the collected reflections 
must be focused [3]. One of the most promising BMRI 
image formation approaches is wavefront reconstruction. 
Results presented in [3] show that this reconstruction 
technique produces images with high Signal to Noise Ratio 
(SNR) and focal quality values. Wavefront reconstruction 
techniques perform a series of operation on the frequency 
domain to form an image of the collected backscattered 
fields. Due to the fact that most of the BMRI data is 
acquired and processed using digital equipment, the 
collected data, s(t,θ ) usually has the form of an evenly 
sampled discrete space. The sampled version of s(t,θ), 
s(tl,θn) is defined over an LxN grid, where L is the number 
of time samples, N is the total scan locations in the circular 
scan pattern and l and n are the sample indexes in the t and θ 
directions respectively. To be able to visualize the 
compensated data in a rectangular coordinate system, s(tl,θn) 
must the transferred to a rectangular space (x,y).    
    This is done usually this is done using the following 
mapping: 
  

 𝑆௖(𝜔௠, 𝜃௡) = 𝐼(𝑘௫௨, 𝑘௬௨)      (1) 
 
where 
 𝑘௫௨ = 𝜔௠/ν ∙ cos (𝜃௡), 𝑘௬௨ = 𝜔௠/ν ∙ sin (𝜃௡)   (2) 

 
And 𝑆௖(𝜔௠, 𝜃௡) is the compensated version of s(tl,θn) [3], 𝜔௠ is the mth

 frequency component of the irradiated 
waveform, 𝜃௡ is the nth scan location, 𝑚 = {1,2,3, . . , 𝐿}, 𝑛 = {1,2,3, . . , 𝑁} and ν is the average propagation speed of 
the medium. This mapping process has a nonlinear nature, 
resulting in the formation of a non-evenly spaced set of 
frequency points. The spectrum corresponding to this set of 
frequency locations cannot be processed using conventional 
Fourier techniques. In order to produce an evenly spaced 
spectrum, the mapped data must be interpolated.  
      Results presented on [4] indicate that the use of different 
interpolation techniques has an impact on the SNR and focal 
quality of radar images acquired in scenarios where a 
rotational location shift exists.  In this paper, a performance 
study of three popular interpolation techniques, nearest 
neighbor, bilinear and cubic spline interpolation, in BMRI 
scenarios is presented. The SNR, focal quality and 
computational cost of the evaluated techniques were 
assessed using numerical phantoms obtained from Magnetic 
Resonance Imaging (MRI) data sets.  This paper is 
organized as follows. An introduction to interpolation 
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theory on unevenly sampled spaces and the mathematical 
basis for the evaluated methods is given in section 2.  A 
comparison between the evaluated interpolation techniques 
is shown and discussed in section 3. Finally, concluding 
remarks can be found in section 4. 

 
 

II. INTERPOLATION OF UNEVENLY SAMPLED 
SPACES 

 
Consider the ordinate pairs (𝑘௫௨, 𝑘௬௨) where 𝑢 ∈ {1,2, … , 𝑞} 
and 𝑞 = 𝐿 ∙ 𝑀.  Due to the nonlinear nature of the mapping 
functions in (1), the sample spacing in this frequency space 
is not uniform. Although spectral data of this type can be 
processed using Fourier techniques that consider non 
equidistant sampling, the resulting images exhibit reduced 
spatial resolution and the formation of ringing artifacts. If 
conventional Fourier techniques are to be used, an 
interpolation process must be performed to generate an 
evenly sampled spectrum. This can be accurately done using 
a triangulation mesh basis.  

Consider the points contained in the set 𝑃 = ൛𝑃ଵ, 𝑃ଶ, 𝑃ଷ, … , 𝑃௜, … , 𝑃௤ൟ, where Pi is the ith ordered pair 
in ൫𝑘௫௨, 𝑘௬௨൯ and 𝑞 = 𝐿 ∙ 𝑀. A triangulation 𝑇 is asset of N 
triples of points(𝑃௜, 𝑃௝, 𝑃௞), where  𝑖, 𝑗, 𝑘 ∈ {1,2, … , 𝑞} and (𝑃௜, 𝑃௝, 𝑃௞) are pairwise distinct such that for each triple, the 
corresponding points are the vertices of a triangle with the 
properties that each such triangle contains only those three 
points of P and those are the vertices, that the intersection of 
the interiors of any two triangles is empty, and that the 
unions of those triangles is the complex hull of P[5] . For 
any set of points, there are almost always several 
triangulations. To optimize this topological process, a 
Delaunay triangulation algorithm is often used. This 
approach optimizes the triangulation process by evaluating 
the smallest angle in each of the possible triangulations 
present in the evaluated set [5]. This algorithm is described 
in detail on [6].  From this point, a wide variety of 
interpolation basis can be used to generate a function 𝐼(𝑘௫, 𝑘௬)that defines the behavior of the spectral data 
contained in ൫𝑘௫௨, 𝑘௬௨൯ over the evenly sampled frequency 
space (𝑘௫, 𝑘௬). 

 
a)  Nearest neighbor interpolation 
 
In the nearest neighbor approximation, the interpolated 
point Qi is assigned the value of the closest data point in n-
dimensional space.  This process yields a piece-wise 
constant function. In an uneven frequency space, this is 
interpolation technique is performed by determining the cell 
within the Voronoi diagram of the frequency space where 
the Qi is located. A Voronoi diagram is a set of polytopes 
generated by partitioning a plane with h points into convex 
polygons such that each polygon contains exactly one 
generating point and every point in a given polygon is closer 
to its generating point than to any other. The Voronoi 
diagram of a set of points g can be determined by 
calculating the dual graph of the Delaunay triangulation T 

associated with g. 

 
 
Figure 2. Delaunay triangulation of 10 random data points 
in the (x,y) plane. 
 
b) Linear interpolation 
 
From elemental analysis, it is known that three distinct non-
collinear points in R3 define a plane. Given a triangulation T 
over P, an interpolating plane can be constructed over each 
individual triangle in T [5].  Let suppose that we take the 
triangle 𝑡௨,௩,௪ formed by 𝑃௨, 𝑃௩, and 𝑃௪. If we write the 
interpolating plane as: 
 𝐸௨,௩,௪൫𝑘௫, 𝑘௬൯ = 𝑎 + 𝑏(𝑘௫ − 𝑘௫௨) + 𝑐൫𝑘௬ − 𝑘௬௨൯   (3)  ∀൫𝑘௫, 𝑘௬൯ ∈ 𝑡௨,௩,௪ 
 
Then the interpolation conditions may be written as: 
 

ቌ1 0 00 (𝑘௫௩ − 𝑘௫௨) ൫𝑘௬௪ − 𝑘௬௩൯0 (𝑘௫௪ − 𝑘௫௩) ൫𝑘௬௪ − 𝑘௬௩൯ቍ ቆ𝑎𝑏𝑐ቇ = ൮ 𝐼൫𝑘௫௨, 𝑘௬௨൯𝐼൫𝑘௫௩, 𝑘௬௩൯𝐼൫𝑘௫௪, 𝑘௬௪൯൲  (4) 

 
Then with 
  𝑑 = (𝑘௫௩ − 𝑘௫௨)൫𝑘௬௪ − 𝑘௬௨൯ − (𝑘௫௪ − 𝑘௫௨)൫𝑘௬௩ − 𝑘௬௨൯ ≠ 0 (5) 
 
The coefficients are given by: 
 𝑎 = 𝐼൫𝑘௫௨, 𝑘௬௨൯                                    (6) 𝑏 = ଵௗ ൬ቀ𝐼൫𝑘௫௩, 𝑘௬௩൯ − 𝐼൫𝑘௫௨, 𝑘௬௨൯ቁ ൫𝑘௬௪ − 𝑘௬௨൯ − ቀ𝐼൫𝑘௫௪, 𝑘௬௪൯ −𝐼൫𝑘௫௨, 𝑘௬௨൯ቁ ൫𝑘௬௩ − 𝑘௬௨൯൰ (7) 𝑐 = ଵௗ ൬ቀ𝐼൫𝑘௫௪, 𝑘௬௪൯ − 𝐼൫𝑘௫௨, 𝑘௬௨൯ቁ ൫𝑘௫௩ − 𝑘௬௨൯ − ቀ𝐼൫𝑘௫௩, 𝑘௬௩൯ −𝐼൫𝑘௫௨, 𝑘௬௨൯ቁ ൫𝑘௬௪ − 𝑘௬௨൯൰(8) 
 
By repeating this process all over T, a piece-wise linear 
function  𝐼௟൫𝑘௫, 𝑘௬൯ can be determined.  From this point, all 
that is needed is to determine the triangles in which the 
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interpolation points are located and calculate their values 
using the corresponding 𝐸௨,௩,௪൫𝑘௫, 𝑘௬൯ function. 
 
c) Cubic spline interpolation 
 

 Splines are piece-wise polynomial functions used as an 
interpolation basis to model a sampled function so that a set 
of n + 1 data points can be represented by n functions. Cubic 
splines are the most commonly used due to the fact that this 
kind of functions minimizes the functional: 

 𝐽(𝑓) = ∫ |𝑓′′(𝑘)|ଶఌమఌభ                           (9)  
 
over all the Sobolev space 𝐻ଶ([𝜀ଵ, 𝜀ଶ]).  This condition 
assures that the cubic spline is the smoothest function that 
can be use to fit a series of data points in the interval [𝜀ଵ, 𝜀ଶ]   [7]. Define a 1D function 𝑙(𝑘௭) defined over a set 
of values 𝑘௭ in the k domain, where 𝑖 ∈ {1,2, … , 𝑍}. The 
ith segment of a cubic spline function, 𝐶(𝑘), is used to 
interpolate the value of n points in the interval [𝑘௜, 𝑘௜ାଵ] is 
defined by:    

 𝐶௜(𝑘) = 𝛼௜(𝑘 − 𝑘௜)ଷ + 𝛽௜(𝑘 − 𝑘௜)ଶ + 𝛾௜(𝑘 − 𝑘௜) + 𝛿௜ (10) 
 
where: 
 𝛼 = ቀ𝐶௜ାଵᇱ (𝑘௜ାଵ) − 𝐶௜ᇱ(𝑘௜)ቁ 6ℎ௜ൗ            (11) 𝛽 = 𝐶௜ᇱ(𝑘௜)/2                              (12) 𝛾 = ቀ௟൫௞೔శభ൯ି௟൫௞೔൯ቁ௛೔ − ቀଶ௛೔஼೔ᇲ(௞)ି௛೔஼೔శభᇲ (௞)ቁ଺           (13) 𝛿 = 𝑙(𝑘௜)                              (14) 
 
where ℎ௜ = 𝑘௜ାଵ − 𝑘௜. The values of the coefficients are 
calculated using the iterative approach described in [7]. The 
adjacent spline segments keep continuity in their curvature 
and slope at the values defined in 𝑘௜, also called knots. Over 
a triangulated space, every 2D cubic spline segment is 
defined using 10 coefficients. This poses a problem on any 
given element of T, due to the fact that only 3 points are 
available to generate the spline function [5]. To solve this 
problem, each triangle in T is divided into 3 subtriangles by 
directing a line from each vortex to the centroid of the 
triangle. Then, the partial derivatives of at the center, 
vortexes and bisection points are calculated.  Using these 
values, an iterative procedure similar to the one used for (8) 
is used to calculate the coefficients of each segment of the 
2D cubic spline function 𝐼஼൫𝑘௫, 𝑘௬൯ over T. A detailed 
explanation of the algorithm is given in [5]. An example 
illustrating the results obtained by each interpolation method 
on a set of randomly generated data points is shown in 
figure 3. 
 

IV. RESULTS 
 
In order to assess the capabilities of the evaluated methods, 
two simulated data sets were produced using the radar 
simulator described in [8].  These data sets were generated 

using a simulated pattern of 72 scan locations with a 0.4m 
radius in the x-y plane.  MRI data sets were used to generate 
the numeric phantoms. These data sets were obtained from 
the University of Wisconsin-Madison online phantom 
repository. The dielectric properties of the breast regions 
contained in the MRI data sets were determined using the 
values published in [2]. A Stepped Frequency Continuous 
Wave (SFCW) was used as the irradiated signal. The SCFW 
had a bandwidth of 11 GHz with a center frequency of 6.5 
GHz.  The proposed method was implemented in a desktop 
PC with a 2.6 GHz Phenom 9950 Quad CPU and 8 GB 
RAM. 
 

 
Figure 3. Interpolation functions generated using: Nearest 
neighbor (thick line), linear (dotted line), and cubic spline 
interpolation (dashed line). 
 

The evaluated techniques were tested and validated using 
a MATLAB development environment. The performance of 
the evaluated methods was quantitatively measured using 
two metrics, Signal to Noise Ratio (SNR) and conditional 
entropy, denoted as H, [3]. The SNR of the reconstructed 
images technique was calculated as follows: 

 𝑆𝑁𝑅 = 20 ∙ 𝑙𝑜𝑔ଵ଴ ቌ∑
=

Γ
α

α
1

3, /
j

dBj 𝜎௪൘ ቍ     (15) 

 
where  dBj 3,Γ  is the magnitude of the 3dB point of the jth 
scattering source in the image reconstructed by  the 
evaluated algorithm, α is the total number of scatter sources, 
and wσ  is the standard deviation of the background noise. 
In this paper, the reflections from the fibroglandular tissue 
areas were not considered as noise due to the fact that these 
regions can provide anatomical information for post-
reconstruction processing, i.e. image fusion.  

    The results of an initial experiment using the evaluated 
techniques can be seen in figure 4. In this experiment, a 
tumor with a diameter of 5mm was inserted at (-0.02,-0.017) 
m. In order to have a better visualization of the 
reconstructed target responses, the surface reflections were 
removed using the method used by the authors in [3]. The 
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red circle denotes the location of the removed skin 
reflections.  A second numerical setup and its corresponding 
reconstructed images are shown in figure 5.  For this 
experiment, a tumor with a diameter of 5mm was inserted at 
(0.0125,-0.0025) m. Notice the artifact formation on the 
images generated using the cubic spline approach.  The 
authors believe that the smoothness constraints that inherent 
to the cubic spline approach are the cause of these artifacts. 

 

 
         a)                                           b) 

 
        c)                                           d) 

Figure 4. a) MRI model, b) Reconstructed image using  
linear interpolation, c) Reconstructed image using  nearest 
neighbor interpolation, d) Reconstructed image using cubic 
spline  interpolation. The tumor responses are encircled with 
an orange contour. 
 

 
         a)                                         b) 

      
        c)                                           d) 

Figure 5. a) MRI model, b) Reconstructed image using  
linear interpolation, c) Reconstructed image using  nearest 
neighbor interpolation, d) Reconstructed image using cubic 
spline  interpolation. The tumor responses are encircled with 
an orange contour. 

The resulting SNR and conditional entropy values obtained 
in each experiment are summarized in Table 1. Finally, the 
computational cost of the proposed technique was evaluated 
by calculating the average execution time 30 simulated data 
sets. The average execution time was 31, 35.4 and 240 
seconds for the nearest neighbor, linear and cubic spline 
techniques respectively. The tumor response location error 
in the images generated using the nearest neighbor and 
linear interpolation was 5mm. 
 

TABLE I 
SNR and Conditional Entropy value comparison in each 

experiment. 
 
 

   
V. CONCLUSION 

 
A performance study of three popular interpolation 

techniques for 2D BMRI reconstruction was presented in 
this paper. From the results obtained using numerical 
phantoms, it can be shown that linear interpolation offers 
the best balance between SNR and focal quality values. The 
gains in SNR values (20%) are justified by the low 
computational overhead (10%) compared with nearest 
neighbor approaches. 
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Technique/Experiment SNR(dB) H (bits) Error 
(mm) 

Nearest 
Neighbor 

1 4.93 4.7 5 
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Linear 1 5.94 4.8 5.1 
2 9.84 1.58 5.6 

Cubic 1 2.18 4.86 40 
2 5.81 2 12 
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