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Abstract— One of the current research directions in biological
nanotechnology is the use of bacteriorhodopsin in the fabrica-
tion of protein-based photonic devices. Bacteriorhodopsin, with
its unique light-activated photocycle, nanoscale size, cyclicity (>
107), and natural resistance to harsh environmental conditions,
provides for protein-based memories that have a comparative
advantage over magnetic and optical data storage devices.
However, the construction of protein-based memories has been
severely limited by fundamental issues that exist with such
devices, such as unwanted diffraction effects. In this paper,
we propose an algorithm for coping with diffraction effects,
thus providing a solution to a long-standing problem.

I. INTRODUCTION

The field of nanotechnology has responded to the chal-
lenges posed by Moore’s law by measuring, modeling, and
fabricating materials no larger than one thousandth of a mi-
cron (nanometer). At this size, techniques in nanolithography
must account for the thermodynamic effects that accompany
complex molecular architectures. To cope with the high
error rates associated with these thermal side effects, fault-
tolerant designs are often used in fabricating such devices.
The caveat to using these designs is that they rarely match
the high level of functional complexity that is observed in
biological machinery. As a result, biological nanotechnology
has emerged as an appealing alternative to methods in
macroscopic miniaturization.

Much of the current research effort in biological nanotech-
nology is directed toward self-assembled monolayers and
thin films, biosensors, and protein-based photonic devices
[1], [2], [6]. Although a number of proteins have been
explored for device applications, bacteriorhodopsin [5] has
received the most attention. This protein, with its unique
light-activated photocycle, nanoscale size, cyclicity (> 107),
and natural resistance to harsh environmental conditions,
provides for protein-based memories that have a comparative
advantage over magnetic and optical data storage devices. In
addition, bacteriorhodopsin protein memory devices exhibit
increased thermal, chemical and photochromic stability, and
have the advantage of being portable, radiation-hardened,
waterproof, and EMP-resistant. Such devices are capable of
storing large amounts of data in a small volume. There are
a number of potential applications of these systems which
can leverage either the large memory or the associative
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memory capabilities. For instance, the photo or fingerprints
of a suspect in a crime can be matched against a database
of photos or fingerprints of known criminals. To accomplish
this task quickly, a massive degree of parallelism is called
for. Protein-based associative memory processors (PBAMPs)
offer this parallelism and image (fingerprint) matching can
potentially be done in real time. Indeed, prototype PBAMPs
are currently being used for matching fingerprints and other
images.

Although there are some prototype systems and prelim-
inary effort to apply them, the potential of this promising
technology is relatively unexplored. Research on protein-
based memories started in the late 1980s with considerable
anticipation, but enthusiasm decreased rapidly for several
reasons. Commercial development of spatial light modulators
(SLMs), that are an integral part of protein-based mem-
ories, was slow and there were fundamental issues, such
as unwanted diffraction effects, that limited performance in
three-dimensional memory applications. More recently, how-
ever, the development of high-definition television projection
equipment has resulted in the commercial availability of
high-resolution, high-performance and relatively inexpensive
SLMs. Nonetheless, fundamental problems remained. Two
such problems are diffraction effects and scaling.

A. Diffraction Effects

The branched-photocycle three-dimensional memory
stores data by using a sequential two-photon process to
convert bacteriorhodopsin (bR) in the activated region from
the bR resting state to the Q state. The process involves
using a paging beam to select a thin page of memory and a
writing beam that is pixilated in those positions where data
are to be written. The transition from the bR resting state to
the Q state occurs via the intermediate states K, L, M, N,
and O. Only the bR (bit 0) and the Q (bit 1) states are stable
for extended periods of time. By using 32-level grey-scaling
and two polarizations, each voxel can store 64 bits. Attempts
to use higher levels of grey-scaling have failed due in large
part to the problems of diffraction introduced by having
pages with significant differences in the average refractive
indices. To understand this problem, we note that protein
representing bit 0 has a high refractive index and protein
representing bit 1 has a low refractive index with reference
to the red laser beam at 633 nm that is used to read out the
data. Prototypes made of the three-dimensional memory fail
to operate at high storage densities when individual pages
of memory have a preponderance of bits of a given state.
Consider the worst case scenario – each page is either all
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0’s or all 1’s. Then we create a refractive index grating that
diffracts the laser beams quite efficiently because individual
pages are stored with separations of 6−20 µm. While these
separations are much larger than the diffraction limit would
dictate, closer spacing is impossible due to beam steering
inside the data cuvettes. The unwanted beam steering is due
to refractive index gradients. Algorithms that can store data
at high resolution and that maintain the number of 0’s equal
to the number of 1’s would solve this problem.

B. Previous Work on Reducing Diffraction Effects

One way of ensuring an equal number of zeros and ones
is to replace a zero with 01 and a one with 10. However, this
would reduce the available memory by a factor of 2 (which
means that the utility factor would be 50% in this case)
and hence may not be preferred. In [10], the authors have
proposed some methods with corresponding utility factors of
between 95-99%. In this paper, we are interested in methods
that would achieve utility factors of 100% or even more.

II. OPTIMIZED BZIP2 COMPRESSION FOR
REDUCING DIFFRACTION EFFECTS

Probably the best way to achieve utility factors of 100%
or more would be to use a data compression algorithm.
(However, simply applying a data compression algorithm
may not solve the problem, since, in the resulting output,
the number of 0’s may not equal the number of 1’s; so, the
output would need to be further processed in such a way that
the number of 0’s would equal the number of 1’s.) One of
the fastest and most effective data compression algorithms
currently in use is bzip2 [4]. The basic scheme under bzip2
is as follows: apply the Burrows-Wheeler transform [3], then
apply the Move-to-Front (MTF) transform, and finally apply
Huffman coding [7]. Based on this scheme, we consider the
following algorithm for reducing diffraction effects.

Step 1.Apply the Burrows-Wheeler transform.
Step 2.Apply the Move-to-Front (MTF) transform.
Step 3.Apply Huffman coding.
Step 4.The corresponding output is further processed by

appending a number of 0’s (or a number of 1’s) in
such a way that, in the resulting final output, the
number of 0’s equals the number of 1’s. (Definitely,
we also need to specify in the final output how
many 0’s or 1’s have been appended in this step.)

Denote this algorithm by ALG1. (The idea under ALG1 was
already suggested in [9].) Since the first three steps are very
effective in compression, we expect the additional 0’s or 1’s
used in the last step of ALG1 to still allow for utility factors
of 100% or more.

(Data is stored in protein-based memories in binary for-
mat. However, as input to ALG1, we may consider this
binary format or its equivalent byte-by-byte format. No
matter how the input to ALG1 is represented, the output
of ALG1 is still binary.)

A. ALG2: Optimizing ALG1 by means of Quadratic Pro-
gramming

The output in the Huffman algorithm (the third step in
ALG1) is a binary string H = H1H2 (the concatenation of
H1 and H2), where H1 is a binary string representing the
compressed input, and H2 is the binary representation of the
Huffman tables used during the Huffman algorithm. (H2 is
needed at decompression.)

For most files that are compressed in practice, the length of
H1 accounts for more than 99% of the length of H . The input
to the fourth step in ALG1 is H . So, for most files that are
compressed in practice, if H1 consists of an average number
of 0’s and 1’s, then we don’t need to append too many bits
in the fourth step of ALG1. Otherwise, the number of bits
appended in the fourth step of ALG1 may be significant.

In this section, our aim is to optimize the H1 part. (By an
optimized H1 part, we mean an H1 part in which the number
of 0’s is equal to the number of 1’s, or as close as possible
to that in case that is not possible.) Note that the Huffman
algorithm is a randomized algorithm, in the sense that some
decisions during the algorithm are randomly taken. So, our
aim is to see what decisions should be taken during Huffman
coding in order for H1 to have an equal number of 0’s and
1’s. Let us take an example.

Example 1: Let X = (a, a, a, a, b, b, c, c, d, e) be an input
to the Huffman algorithm. The vector of frequencies F for
X is F = (4, 2, 2, 1, 1). Applying the Huffman algorithm to
X might lead to the Huffman tree shown in Fig. 1.
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Fig. 1. A possible Huffman tree for X

Thus, if we use the Huffman tree shown in Fig. 1, then
the codeword associated to a would be 00, the codeword
associated to b would be 01, the codeword associated to c
would be 10, the codeword associated to d would be 110,
and the codeword associated to e would be 111. In such
a case, H1 would be 0000000001011010110111 (H1 being
obtained from X by replacing each symbol in X with its
corresponding codeword). So, H1 would have 13 0’s and 9
1’s. However, the Huffman tree that can be associated to X
is not unique. Another possibility would be the Huffman tree
shown in Fig. 2.

Note that the branch 6 ↔ 10 in Fig. 1 has associated
bit 0, while the branch 4 ↔ 10 has associated bit 1. The
Huffman tree shown in Fig. 2 is obtained from the Huffman
tree shown in Fig. 1 by swapping these two bits. (Note that
if N is a node in a Huffman tree and D1, D2 its immediate
descendants, then we can assign bit 0 to the branch D1 ↔ N
and bit 1 to the branch D2 ↔ N , or, we can assign bit 1 to
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Minimize: N2
zeros+N2

ones

S.t.: 4∗(1-x1)+4∗(1-x2)+2 ∗ x1+2∗(1-x2)+2∗(1-x3)+2 ∗ x2+1∗(1-x4)+1 ∗ x3+1 ∗ x2+1 ∗ x4+1 ∗ x3+1 ∗ x2=Nzeros

4 ∗ x1+4 ∗ x2+2∗(1-x1)+2 ∗ x2+2 ∗ x3+2∗(1-x2)+1 ∗ x4+1∗(1-x3)+1∗(1-x2)+1∗(1-x4)+1∗(1-x3)+1∗(1-x2)=Nones

x1, x2, x3, x4 ∈ {0, 1}

Nzeros , Nones being positive integers

Fig. 3. A quadratic programming formulation for finding the best assignation of variables (for Huffman trees whose structure is the one shown in Figs.
1 and 2)
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Fig. 2. Another possible Huffman tree for X

the branch D1 ↔ N and bit 0 to the branch D2 ↔ N ; the
decision is randomly taken for each pair of branches once the
tree is already built.) So, if we use the Huffman tree shown
in Fig. 2, then the codeword associated to a would be 10,
the codeword associated to b would be 11, the codeword
associated to c would be 00, the codeword associated to d
would be 010, and the codeword associated to e would be
011. In this case, H1 would be 1010101011110000010011,
and would have 11 0’s and 11 1’s, that is, the number of 0’s
would be equal to the number of 1’s. Thus, if the Huffman
tree shown in Fig. 2 is used to compress X , then H1 would
be optimized.

(end of Example 1.)
We have seen in Example 1 that for the same structure of

the Huffman tree, an optimized H1 might be obtained or not,
depending on how bits are assigned at each pair of branches.
For a Huffman tree with n pairs of branches, there are 2n

possibilities, which means that an exhaustive search for the
best assignation of bits at the branches is not a good idea in
practice.

We propose to solve this problem by means of quadratic
programming, as follows. If N is a node in the Huffman tree
and D1, D2 its immediate descendants, then the branches
D1 ↔ N and D2 ↔ N forms a pair of branches, denoted
by (D1 ↔ N,D2 ↔ N). If the Huffman tree is represented
as in Figs. 1 and 2, then each pair of branches consists of an
upper branch and a lower branch. For example, the Huffman
tree shown in Fig. 1 has four pairs of branches. For the pair
of branches (6↔ 10, 4↔ 10), 6↔ 10 is the upper branch,
while 4↔ 10 is the lower branch. We can associate a binary
variable to each pair of branches in the Huffman tree. A
value of 0 for the binary variable would correspond to the
case when the upper branch has been assigned bit 0 and the

lower branch bit 1, while a value of 1 would correspond to
the case when the upper branch has been assigned bit 1 and
the lower branch bit 0. Thus, trying to optimize H1 reduces
to trying to find the best assignation of variables once the
Huffman tree structure is already built.

For example, consider the Huffman tree shown in Fig. 1.
If the pair of branches (4 ↔ 6, 2 ↔ 6) has associated the
binary variable x1, the pair of branches (6 ↔ 10, 4 ↔ 10)
has associated the binary variable x2, the pair of branches
(2 ↔ 4, 2 ↔ 4) has associated the binary variable x3, and
the pair of branches (1 ↔ 2, 1 ↔ 2) has associated the
binary variable x4, as in Fig. 4, then if the bits are assigned
to the branches as in Fig. 1, we would have x1 = 0, x2 = 0,
x3 = 0, x4 = 0.
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Fig. 4. The Huffman tree shown in Fig. 1 with the corresponding
assignation of variables

For the Huffman tree shown in Fig. 2, the assignation of
variables would be x1 = 0, x2 = 1, x3 = 0, x4 = 0, as in
Fig. 5.
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Fig. 5. The Huffman tree shown in Fig. 2 with the corresponding
assignation of variables

Clearly, the assignation x1 = 0, x2 = 1, x3 = 0, x4 = 0
is better than x1 = 0, x2 = 0, x3 = 0, x4 = 0, since it leads
to an H1 with an equal number of 0’s and 1’s.
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We propose the quadratic programming formulation shown
in Fig. 3 for finding the best assignation of variables. Besides
the binary variables x1, x2, x3, x4, we have two more
variables: the number of zeros Nzeros and the number of ones
Nones . Clearly, the smaller the difference between Nzeros

and Nones , the smaller the quantity N2
zeros + N2

ones . The
constraints consist of two equations and some conditions
regarding the values that can be assigned to the variables.
The two equations correspond to the Huffman tree structure
that is present in both Fig. 1 and Fig. 2. (Each of these two
equations is obtained by following all the paths T ↔ R,
where T is a terminal node, and R is the root; for example,
in the first equation shown in Fig. 3, the first two terms
correspond to the path between the terminal node 4 and
the root 10.) Extending the formulation shown in Fig. 3
to any Huffman tree structure is straightforward. Solving
the formulation shown in Fig. 3 using special programs
like CPLEX [8], we would obtain the assignation x1 = 0,
x2 = 1, x3 = 0, x4 = 0, that is, we would obtain the
Huffman tree shown in Fig. 1, which is optimized. (We have
N2

zeros +N2
ones = 121 + 121 = 242 in this case.)

Based on this quadratic programming formulation, we
propose the following algorithm, denoted by ALG2.

Step 1.Apply the Burrows-Wheeler transform.
Step 2.Apply the Move-to-Front (MTF) transform.
Step 3.Apply Huffman coding. Once the Huffman tree

structure is already built, solve the corresponding
quadratic programming formulation using CPLEX
[8], in order to optimize the H1 part.

Step 4.The corresponding output is further processed by
appending a number of 0’s (or a number of 1’s) in
such a way that, in the resulting final output, the
number of 0’s equals the number of 1’s. (Definitely,
we also need to specify in the final output how
many 0’s or 1’s have been appended in this step.)

So, ALG2 is actually ALG1, with the difference that the
proposed quadratic programming formulation is incorporated
into the Huffman coding step (the third step). The output of
the third step in ALG2 is H = H1H2, as in ALG1. But,
since the H1 part is optimized in ALG2 once the third step
is finished, we expect that significantly less bits would be
appended in the fourth step of ALG2 than in the fourth step
of ALG1.

B. Experimental Results

We have implemented both ALG1 and ALG2 in order
to observe the difference between the utility factors. Stan-
dard corpora used to compare data compression algorithms
usually consist of files generated from an alphabet with not
too many symbols. For such files, the bzip2 compressor (or
equivalently, the first three steps in ALG1) is good enough
that ALG1 will almost always produce outputs with an utility
factor of more than 100%. The real difference between ALG1
and ALG2 can be seen in the case of files generated from
an alphabet with many symbols, say 256 symbols. We have
randomly generated three files, each of length 1, 000, 000
bytes, as shown in Table I. The first file, file1, has been

randomly generated using an alphabet with 236 symbols;
file2 has been randomly generated using an alphabet with
246 symbols; and file3 has been randomly generated using
an alphabet with 256 symbols.

TABLE I
FILES USED FOR COMPARING ALG1 AND ALG2

File Size (in bytes)
file1 1,000,000
file2 1,000,000
file3 1,000,000

The results are reported in Table II. (The results given
under the ‘bzip2’ column are actually the results obtained
by applying the first three steps of ALG1; the actual steps
used in the bzip2 utility are a bit more involved.) As one can
see, the more symbols the source alphabet has, the smaller
the utility factor. For file1 and file2, ALG2 provides utility
factors of more than 100%, while ALG1 fails to do so. Even
if there is not a big difference between the utility factors
provided by ALG1 and the utility factors provided by ALG2
(at least for these three files), reaching an utility factor of
100% or even more seems to be of utmost importance in
practice.

TABLE II
EXPERIMENTAL RESULTS

File bzip2 ALG1 ALG2
file1 991,783 1,000,112 991,892

(util. factor: 99.90%) (util. factor: 100.81%)
file2 998,903 1,002,676 999,113

(util. factor: 99.70%) (util. factor: 100.08%)
file3 1,004,625 1,010,762 1,004,838

(util. factor: 98.90%) (util. factor: 99.50%)
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