
 

Abstract—Current methods for annotating biomedical
data resources rely on simple mappings between data
elements and the contents of a variety of biomedical
ontologies and controlled vocabularies. Here we point out
that such simple mappings are inadequate for large-scale
multiscale, multidomain integrative “virtual human”
projects. For such integrative challenges, we describe a
“composite annotation” schema that is simple yet sufficiently
extensible for mapping the biomedical content of a variety of
data sources and biosimulation models to available
biomedical ontologies.   

I. INTRODUCTION

key strategy for integrating biomedical knowledge
in service to solving biomedical research and clinical
problems is the annotation of various knowledge

resources — images, databases, electronic medical records
(EMR), biosimulation models — against controlled
vocabularies and reference ontologies. The usefulness and
success of such a strategy depends on how well the
annotations capture and disambiguate the biomedical
meaning (the semantics) of the elements of the knowledge
resources which the users can apply for searching, integrating
and reusing data and models. Such an approach is central to
integrative biology and, in particular, to efforts such as the
Physiome [1] and the Virtual Physiological Human (see
http://www.vph-noe.eu/home).

Such efforts at integrative biology depend on a number of
different data and knowledge resources whose contents must
be available for searching, reuse and computation. For
example, images which are ubiquitous in biomedical
enterprise include clinical scans (e.g., MRIs and CTs), gene
expression maps, and electrophoresis gels. Quantitative data
are derived from such images (e.g., volume of scanned
regions, rates of gene expression) as well as from
experimental and clinical measures (e.g., blood pressure,
body weight). These data may be embedded within an
original data source (image, EMR, etc.) or compiled in
databases. Integrative biologists, particularly those who
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construct biosimulation models, depend on such data to
parameterize and test their models against the biological
“reality” they seek to represent, analyze, and explain.

In this paper we develop a representational schema for the
systematic annotation of data from many diverse sources
such as images, clinical and basic science databases and
biosimulation models. With some use-case examples, we
will show how simple annotations (e.g., a pointer to a
single ontology class) are insufficient for annotating the
variety data sources (and medical terminologies) that must
be reused and integrated within the scope of current virtual
human projects.

We propose a composite annotation schema designed to
span and integrate multiple structural scales and apply to
multiple biophysical domains. We demonstrate how
composite annotations, founded on sound principles of
biomedical ontology, apply to a wide range of biomedical
clinical and research  tasks and, we propose, may provide a
central strategy for interrelating the various computational
parts of multiscale virtual human projects.

II. BACKGROUND — BIOMEDICAL ONTOLOGIES

Because the development of biomedical ontologies has
occurred in parallel to, but largely independently of, the
maturation of biosimulation technologies, a brief review of
relevant ontologies is given below.

A. Biomedical ontologies
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Fig 1.  A spectrum of multiscale biomedical structures (arrayed vertically)
is encoded by a set of overlapping biomedical structural ontologies
(outlined boxes). To assure orthogonality across candidate ontologies, the
spectrum may be partitioned, for example, by gray horizontal bars. FMA =
Foundational Model of Anatomy Ontology [2]. CL = Cell Type Ontology
[3]. GO = Gene Ontology [4]. ChEBI = Chemical Entities of Biological
Interest [5].
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Biomedical ontology is a burgeoning field in which
experts encode knowledge in terms of ontological classes for
biological entities in various domains (e.g., anatomy,
diseases, physics). Open Biomedical Ontologies (OBO; see
http://www.obofoundry.org/   ) advocates that ontologies
should be orthogonal with respect to each other in that one
ontology ought not to include classes encompassed in other
ontologies. Ontologies do, however, overlap having been
independently developed for different sub-domains for
different purposes based on different assumptions. This is
illustrated in Fig. 1 where several structural ontologies span
a broad range of structural granularity in which the CL cell
types overlap with the FMA, and GO molecules with
ChEBI.

Whereas the structural ontologies encode and classify the
“stuff” of biological systems, databases and biosimulation
variables encode the values of measured (or calculated)
physical properties (e.g., volume, flow rate) of such entities.
Thus model variables must be mapped to their inherent
physical properties as well as to the physical entities that are
bearers of the properties. Toward this, we have introduced
the Ontology of Physics for Biology (OPB [6]) that is a
formal ontology encoding both the properties and the laws
of systems dynamics (Fig. 2). The OPB includes a
comprehensive taxonomy of Physical property classes that
represent both system dynamic variables (e.g., flows,
displacements) as well as constitutive properties (e.g., flow
resistances, vessel compliances) of biophysical systems. The
OPB spans the multiple physical domains (Fluid domain,
Chemical kinetic domain, etc.) that occur in biosimulation
modeling.

Fig 2.  Protégé screenshot a part of the class hierarchy of the Ontology of
Physics for Biology (OPB [6]), an ontology that encodes the physical
properties and laws required for modeling dynamical biological systems.

B. Nomenclature and typography
Although the relative merits of various controlled

vocabularies, terminologies and formal ontologies continue
to be debated, in this paper we simplify our nomenclature by
using the term “ontology” in its most general and inclusive
sense to refer to both controlled vocabularies and to formal
ontologies. Accordingly, we use “classes” to refer  to both
vocabulary terms and ontology classes (types or universals)
and are in Courier  font. Furthermore, we describe
composite annotations in schematic terms that could be
implemented in a variety of formalisms (e.g., OWL,
obo.edit).

III. ANNOTATING ANATOMICAL STRUCTURES

Whereas  a region of a scanned image may be annotated
with a single FMA class (e.g., FMA:Blood in aorta),
not all structural entities have been entered in the FMA
(despite its ≈80K classes). For example, there is a class
Blood in aorta yet there is no class Urine in
ureter even though such a class would fall within the
FMA’s representational guidelines. Blood in aorta
exists as a single class because the FMA curators pre-
coordinated two classes FMA:Lumen of aorta and
FMA:Portion of blood logically with the structural
relation contains. Although the same class construct can
be pre-coordinated for urine in the ureter or in the loop of
Henle, it would be impractical and impossible to anticipate
and include all such combinations as may be required by
users. Furthermore, other bone fide structural classes cannot
be pre-coordinated from a single ontology. For example, the
oxygen content of erythrocytes in the blood in the aorta
requires annotation classes from 3 ontologies: ChEBI, CL,
and FMA. For example, a post-coordinated annotation for
the oxygen in aortic blood could be:

ChEBI:Oxygen (1)
contained_in

CL:Erythrocyte
contained_in

FMA:Blood in aorta.

To build an ontology that precoordinates classes for all
molecular components in all cell parts of all cells in all
organs...and so on, leads to an impossible combinatorial
explosion. Yet annotating images, databases and
biosimulation models requires such specific combinations.
One solution to the combinatorial problem is to post-
coordinate (or, post-compose) annotations as required for
solving specific problems. A post-coordinated annotation
references specific classes and logically relates them using
relations as, say, defined in the OBO Relations Ontology
(see    http://www.obofoundry.org/ro/    ).

Furthermore, a biosimulation models often define
structural participants using functional, not structural,
criteria. For example a modeler may bifurcate the aortic
blood into a turbulent boundary flow region and a laminar-
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flow central region. Because neither region is represented in
the FMA, annotating such a biosimulation entity in a
machine-readable fashion requires creating  two new classes
(Boundary region of aortic blood and
Central region of aortic blood) and relating
them to Blood in aorta via structural relation part
of as in:

Boundary region of aortic blood (2)
part_of

FMA:Blood in aorta.

As we will show below, the composite annotation schema
we have developed has the capacity for creating post-
coordinated and composed annotations as exemplified in (1)
and (2). Next we show how post-coordinated composite
annotations are required for annotating physically-measured
(or calculated) properties of physical entities.

IV. ANNOTATING PHYSICAL PROPERTIES

In addition to annotating the kinds of biomedical entities,
the properties of such entities must be identified and
annotated as well. Clinical data embedded in EMRs, gene
expression rates in genomic databases, and simulation
variables are different kinds of properties whose physical
meaning must be annotated in order to interrelate the
biological content of the various data sources. To do so in a
pre-coordinated fashion only exacerbates the combinatorial
problem because each physical entity has several physical
properties. For example, aortic blood can have four dynamic
variables (volume, flow rate, pressure, and fluid momentum)
as well as several so-called “constitutive” parameters (e.g.,
viscosity) that characterize the blood itself. The biophysical
meaning of such variables in a biosimulation model may be
suggested by mnemonic names (e.g., “Paorta”, “AoP”), or
revealed to human readers by cryptic code comments (e.g.,
“// aortic pressure”). Consequently, it is increasingly being
recognized that informal annotations are insufficient for
model reuse and integration for large-scale efforts such as the
IUPS Physiome and EU Virtual Physiological Human.

The solution to this annotation problem is post-
coordination; in this case between an annotated physical
entity (as described above) and a class that represents a
measurable physical property. Thus, a variable or datum
encoding aortic blood pressure can be post-coordinated as
follows using the relation is_property_of:

OPB:Chemical amount (3)
is_property_of

ChEBI:Oxygen
contained_in

CL:Erythrocyte
part of

FMA:Blood in aorta.

Similarly, the flow rate of blood in the central region of
blood in the aorta (as in (2)) would be:

OPB:Fluid flow (4)
is_property_of

Central region of aortic blood
part_of

FMA:Blood in aorta.

In this fashion, the physical properties (or any kind of
property, given a suitable ontology) can be attributed to any
kind of physical entity as required.

V. ANNOTATING PHYSICAL LAWS

The values of physical properties (of physical entities) are
not, of course, arbitrarily independent of each other but are
constrained by the laws of physics; laws which apply at all
levels of structural granularity. It is precisely these
constraints that are encoded in biosimulation models to
simulate the behavior of multiscale biological systems.
Many such models, for example, simulate cardiovascular
dynamics that relate systemic properties like the blood
pressure in the aorta to neuroregulatory properties to
contractile properties of arteriolar smooth muscle, and so on.
Models can differ, of course, in the modelers choice of
which physical properties will be calculated as well as the
kinds of physical laws that are encoded in the model
computations. One model may use the linear form of the
fluid Ohm’s Law whereas another model may employ one of
a number of non-linear versions. Such distinctions are
important to make but are, typically, only knowable by
human-readable documentation.

To make these model-model distinctions available in
machine-readable form requires annotating the kinds of
physical dependencies that are encoded in a model. For
example:

OPB:Linear fluid resistive dependency
has_player (5)

OPB:Fluid flow 
is_property_of

FMA:Blood in aorta.

The representation of specific physical laws in terms of
computational dependencies is a key step in modularizing,
reusing and re-encoding biosimulation models [].

VI. COMPOSITE  ANNOTATION SCHEMA

We propose that the annotations as exemplified above
may be implemented in a machine-readable fashion using the
composite annotation schema (Fig. 3). A composite
annotation is a nested representational structure that is a
generalization of the SemSim (   sem    antic    sim    ulation) model
architecture that we have developed and tested in the domain
of biosimulation modeling [7]. Each composite annotation
model is a light-weight ontology (SemSim models are
encoded in OWL) consisting the same three main classes as
in the OPB (Fig.  2): Physical entity, Physical
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property, and Physical dependency. A composite
annotation therefore consists of instances of these classes
that are related by various structural relations as found in the
OBO Relation Ontology (RO [8]). This ontology provides
the formal relations needed to describe how the structural
entities in a composite annotation relate to each other as in
the prior examples. However, RO does not yet include
relations appropriate for connecting non-structural ontologies
used in OPB and the composite annotation schema. Thus,
we currently use the has_property and has_player
relations for such links.

GO

Data sourceOntology

ChEBI

FMA

CL

OPB

property_of

Physical
property

structural_relation

Physical
entity

Physical
dependency

has_player

Composite
annotation

image

data1 data2

1.1 4.2

3.7 2.5

database

   :
   // model variable
   VAR;  
   // computation
   VAR = … ;    .
  :

biosimulation

Fig 3.  A nested schema for composite annotations for instances of
biomedical data from a variety of data sources (images, databases,
biosimulation models) to relevant domain entities in biomedical ontologies.
Solid lines map logical relations between class instances; dotted lines are
pointers to ontology classes (left) or to specific data sources (right).

The flexibility and, hence, the generalizability of
composite annotations lies, in part, in the ability to create
post-coordinated composites of Physical entity from
existing ontology classes. Furthermore, the schema allows
the fabrication of novel Physical entity instances
composed according to the same structural relations as used
in domain structural ontologies.

The nested structure in the center of Fig 3 shows that
composite annotations can increase in complexity. Indeed,
the presentation order of this paper follows exactly this
structure: equations (1) & (2) show examples of physical
entities and their structural relationships; equations (4) & (5)
show the next level, where we use “property_of”, and
annotations of computations require the most complex sort,
encompassing all elements in the figure. This nested
structure reflects the principle of ontological dependence: an
instance of Physical dependency can exist only if
instances Physical property exist (its players), and an
instance of Physical property can exist only if an
instance of Physical entity exists (the bearer of the
property).

VII. DISCUSSION

We demonstrate here a flexible and generalizable schema
for the machine-readable annotation of images, datasets and
biosimulation variables in terms of available biomedical
ontologies. We are motivated by the computational needs of
large-scale efforts at data and model integration that require
flexible and efficient methodology and tools for deriving and
accessing data and the means to reusing mathematical
models. The composite annotation schema, adapted from the
OPB [6], is a component of the SemSim (semantic
simulation) modeling approach that we use to annotate,
merge, and re-encode biosimulation models [9,7].

We offer composite annotation as a solution to the
problem of integrating biomedical data and knowledge
across large scale integrative projects such as Physiome and
the Virtual Physiological Human. We argue that, given a set
of orthogonal reference ontologies and a generalizable
annotation schema as described here could significantly
assist such work. A key first step for data and model
integration is a solid, machine-encodable semantics of model
variables and equations. We propose that a repository of
composite annotations could allow researchers to find
variables that share common semantics across biosimulation
models and datasets.
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