
  

Abstract— High performance computing is required to make 

feasible simulations of whole organ models of the heart with 

biophysically detailed cellular models in a clinical setting.  

Increasing model detail by simulating electrophysiology and 

mechanical models increases computation demands. We present 

scaling results of an electro – mechanical cardiac model of two 

ventricles and compare them to our previously published results 

using an electrophysiological model only. The anatomical data-set 

was given by both ventricles of the Visible Female data-set in a 

0.2 mm resolution. Fiber orientation was included. Data 

decomposition for the distribution onto the distributed memory 

system was carried out by orthogonal recursive bisection. Load 

weight ratios for non – tissue vs. tissue elements used in the data 

decomposition were 1:1, 1:2, 1:5, 1:10, 1:25, 1:38.85, 1:50 and 

1:100. The ten Tusscher et al. (2004) electrophysiological cell 

model was used and the Rice et al. (1999) model for the 

computation of the calcium transient dependent force. Scaling 

results for 512, 1024, 2048, 4096, 8192 and 16,384 processors 

were obtained for 1 ms simulation time. The simulations were 

carried out on an IBM Blue Gene/L supercomputer. The results 

show linear scaling from 512 to 16,384 processors with speedup 

factors between 1.82 and 2.14 between partitions. The most 

optimal load ratio was 1:25 for on all partitions. However, a shift 

towards load ratios with higher weight for the tissue elements can 

be recognized as can be expected when adding computational 

complexity to the model while keeping the same communication 

setup. This work demonstrates that it is potentially possible to 

run simulations of 0.5 s using the presented electro-mechanical 

cardiac model within 1.5 hours.  

 

Index Terms— Multi-physical heart models, computational 

biology, parallel supercomputer, orthogonal recursive bisection 

I. INTRODUCTION 

ULL scale simulations of the electrophysiology of the 

heart required the computation power of high performance 

computing (HPC) systems [1 - 3]. The electrophysiological 
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model needs to be augmented by mechanical, contraction 

deformation models and models of blood flow to model the 

heart in its full complexity for personalized medicine [4]. 

Increasing model complexity will increase the computational 

demands. Also, the difference in computational load for tissue 

vs. non – tissue elements will become even more significant 

which highlights the need for optimal load balancing measures. 

We have developed the orthogonal recursive bisection 

algorithm for cardiac simulations previously and investigated 

its effectiveness with respect to different cardiac cell models 

[5] and load ratios [1] in simulations of cardiac 

electrophysiology on the IBM Blue Gene/L supercomputer [6]. 

In this article we increase model complexity by simulating a 

two ventricular electro–mechanical model. We will present 

load balancing and scaling results to 16,384 processors and 

compare the results with our previous simulations. 

II. METHODS 

A. Cardiac model 

We chose the ten Tusscher et al. (TT) model [7] as a 

representation of cellular electrophysiology. The calcium 

transient of the TT model was used as input to the Rice et al. 

model [8] to compute the force generated per cell. A limitation 

of our electro – mechanical model is that we did not include 

electro – mechanical feedback. However, since we wanted to 

investigate computation performance, the electro – mechanical 

feedback plays a minor role and can be disregarded at this 

stage of investigation. 

The diffusion terms to model electrophysiological excitation 

can be determined by the mono- or bidomain equations [9]. In 

this study we have used the monodomain equation [1] to have 

only one communication cycle per time step. The monodomain 

equation is given by  

 

λ

1− λ
∇(M i∇v) = χCm

∂v

∂t
+ χIion        (1) 

 

with the constant scalar λ that defines an equal anisotropy ratio 

between the extracellular and intracellular conductivity 

matricies Me = λMi, v  is the transmembrane voltage, χ is the 

membrane area to volume ratio, Cm the membrane capacitance 

and Iion the ionic current. For boundary conditions the 

monodomain model yields 

Strong scaling and speedup to 16,384 processors  

in cardiac electro – mechanical simulations 

Matthias Reumann, Member, IEEE, Blake G. Fitch, Member, IEEE, Aleksandr Rayshubskiy, David 

U. J. Keller, Member IEEE, Gunnar Seemann, Olaf Dössel, Member, IEEE, Michael C. Pitman, John 

J. Rice  

F 

2795

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



n∇(M i∇v) = 0                (2) 

with the outward unit normal vector n of the hearts boundary. 

The model includes fiber orientation account for 

heterogeneous anisotropic conduction. 

The monodomain reaction – diffusion system was 

implemented using an operator splitting approach and the 

finite difference method [3, 9, 10] based on the regular 

Cartesian grid of the anatomical model. 

B. Data decomposition and communication framework 

The Laplacian operator in equations 1 – 2 require only 

neighboring elements for the computation of the diffusion 

term. Thus, we can decompose the data set into subvolumes 

that are distributed one to each processor. Adding a ghost layer 

around the subvolume where the values of the adjacent 

elements are stored enables the computation of the diffusion 

term in a distributed memory system. In this study we use the 

orthogonal recursive bisection (ORB) algorithm first 

introduced in N-body problems in molecular dynamics 

simulations [11, 12] adjusted to our cardiac model. A detailed 

description of the ORB algorithm used and the corresponding 

communication setup can be found in [1]. Here we will only 

outline the underlying idea..  

A list of x – y – z co-ordinates and the respective 

computational load of the associated element is created based 

on the anatomical data of the Visible Female ventricles 

(National Library of Medicine, Bethesda, Maryland, USA) 

with resolution of 0.2 mm cubic elements (Fig. 1).  The model 

consists of over 128.9 million elements in an array of 537 by 

492 by 488 with approximately 32.5 million active ventricular 

elements. A number of lists for the ORB input was created to 

account for different load ratios of non – tissue vs tissue 

elements. Tissue elements here refer to elements in the data set 

that are associated with ventricular tissue for which the TT and 

Rice et al. model was computed. The cell models were not 

computed for non – tissue elements. To compare the results of 

this study with our previous simulations [1] we decided to test 

load ratio 1:1, 1:2, 1:5, 1:10, 1:25, 1:38.85, 1:50 and 1:100.  

The volume is first cut into two halves along the x axis by 

first establishing the computational load of the volume then 

counting the load along the x axis. The x value that determines 

half of the total load gives the x value for the decomposition of 

the volume. The created subvolumes are cut similarly along y 

and z axis in a recursive fashion to create a binary tree 

representation. The so called ORB tree has n levels with 2
n
 

subvolumes. The ORB output is a list of the lowest level 

subvolumes as well as the physical location of the 

computational node to which the subvolume of data will be 

distributed to. Since the Blue Gene supercomputer is 

organized into 2
n
 partitions, the ORB tree can be conveniently 

be mapped onto the physical system. The ORB algorithm maps 

the anatomical subvolumes in x – y – z co-ordinates to the Nx – 

Ny – Nz processor partition. 

The subvolumes are stored in a list of bounding boxes 

associated with a processor rank. By comparing the bounding 

box borders of the subvolumes, a communication list is created 

for each processor so that it knows its communication partners 

and the respective overlap in data to be communicated [1, 5]. 

The communication framework is implemented using standard 

non-blocking Message Passing Interface (MPI) functions. At 

each communication phase, each processor goes through the 

list of communication partners, sends and received the data for 

the transmembrane voltage and stores it in the ghost layer. 

C. Scaling analysis 

Strong scaling results were obtained for 1 ms simulation 

time, i. e. 100 time steps, on 512, 1024, 2048, 4096, 8192 and 

16,384 processors. A stimulus was set in the left ventricular 

apex region for the length of the simulation. The simulations 

were carried on the distributed memory IBM Blue Gene/L 

supercomputer [6]. 

We measured the computation and communication time 

separately as well as the total run time. We define a load 

balance value by determining the average computation time 

over all processors and time steps divided by the maximum 

computation time over all processors and time steps. Similarly 

we compute the load balance for the communication phase.  

The speedup factor is typically defined as 

 

Speedup factor = tN1/tNx              (3) 

 

with tN1 being the fastest run time on one processor and tNx 

the fastest run time on the partition with N = x processors. The 

smallest processor partition used in this study was 512. 

Theoretically, the speedup with respect to one processor is 512 

times for a partition with 512 processors. We adjust this value 

by multiplying it with the load balance value for the fastest 

computation phase over all load ratios on partition N = 512 

and take it as reference for the speedup to 16,384 processors. 

 
 

Fig. 1.  Visible female data – set of the National Library of Medicine, 

Bethesda, Maryland, USA, showing the ventricles as used in our 

scaling simulations. Also visible are parts other cardiac structures like 

the atria and the cardio – vascular system that has been set to bath 

medium in the simulations and thus did not contribute to the 

computational complexity.  

2796



  

10

100

1000

10000

512 1024 2048 4096 8192 16384

processor partition

to
ta

l 
ru

n
 t
im

e
 [
s
] 
(l
o
g
s
c
a
le

)

1:1 1:2 1:5 1:10 1:25 1:38.85 1:50 1:100

10.00

100.00

1000.00

10000.00

1:1 1:2 1:5 1:10 1:25 1:38.85 1:50 1:100

load ratio

to
ta

l 
ru

n
 t
im

e
 [
s
] 
(l
o
g
s
a
le

)

512 1024 2038 4096c 8192 16384  
(a)                                                                                             (b) 

367.34

167.42

85.52

46.53

23.93

13.18

300.21

146.81

73.15

36.46

18.18

8.96

6.70

4.13

2.79

1.95
1.57

1.13

1.00

10.00

100.00

1000.00

512 1024 2048 4096 8192 16384

processor partition

ti
m

e
 [
s
] 
(l
o
g
s
c
a
le

)

total run time avg computation avg communication

512

1024

2048

4096

8192

16384

419.86

921.23

1803.42

3314.82

6444.60

11698.43

100

1000

10000

100000

512 1024 2048 4096 8192 16384

processor partition

s
p
e
e
d
u
p
 f
a
c
to

r 
(l
o
g
s
c
a
le

)

theoretical speedup speedup  
(c) (d) 

 
Fig. 2. Scaling results for different number of processors (N). (a) The graph shows the computation time on all partitions for all load ratios. Load ratio 1:25 

achieved the best results on all partitions. (b) The total run time versus load ratio on all processor partitions is shown. This figure illustrates that very similar 

speedup factors are achieved for all load ratios. (c) Displayed are the average communication time (green triangles) and computation time (blue circles) as 

well as the total run time (red diamonds) for partitions N = 512 to N = 16,384. The data points are joined by linear interpolation for visualization purposes. 

Linear scaling in both communication and computation can be recognized. (d) Shown is the adjusted speedup factors for the simulations with respect to the 

theoretical speedup 

. 

III. RESULTS 

A. Data decomposition and communication 

The results for the data decomposition in this study are the 

same as for our previously published simulations [1] where 

only an electrophysiological model was computed because 

the same load values were used for the same anatomical data 

set. Thus, the results can be summarized by highlighting that 

small load ratios like 1:1 will yield subvolumes of equal or 

close to equal size but with large differences in the number 

of tissue elements per subvolume that determine the 

computational load. Increasing the load for tissue elements 

leads to a greater distribution of subvolume sizes and tissue 

elements per subvolume are more evenly spread.  

When increasing the processor partition by factor 2, each 

subvolume in the smaller partition is divided by factor 2. 

Thus, the subvolume sizes are half as large including on 

average half as many tissue elements. The results confirm 

this behavior. The distribution of tissue elements vs. 

subvolume sizes keeps its shape for all load ratios but the 

scale of the distribution is reduced by about factor 2 when 

increasing the number of processors by 2. 

B. Scaling results and speedup 

Figure 2 and table 1 summarize the results of the strong 

scaling simulations. The simulations scale linearly for all 

load ratios (fig. 2.a). The load ratio with the fastest run times 

is 1:25 for all partitions (fig. 2.b). The fastest run times (fig. 

2.c) are 367.34 s, 167.42 s, 85.52 s, 46.53s, 23.93 s and 

13.18 s on 512, 1024, 2048, 4096, 8192 and 16,384 

processors respectively. However, while the run times for 

load ratio 1:38.85 are over 10 % slower on partition 512 – 

2048, they are only 2.7, 4.7 and 1.6 % slower for partitions 

with 4096, 8192 and 16,384 processors, respectively. 

The adjusted speedup factor is below the theoretical 

speedup (fig. 2.d). However, the speedup between a 

processor partition and the next larger partition is 2.19, 1.96, 

1.84, 1.94 and 1.82. The simulation times for the average 
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computation phase are close to the total run time. The 

computation phase scales better than the overall run time and 

the communication time as shown in fig. 2.c. Disregarding 

the communication overhead the speedup achieved is even 

higher and just above the theoretical value of 2. While the 

load balance value for the computation is over 0.8 on 512 

processors, it deteriorates to 0.44 on 16,384 processors (tab. 

1). The load balance value for the communication phase does 

not reach above 0.15 for all partitions.  

IV. DISCUSSION 

Given the results of the electro–mechanical simulations 

the first impression is that the difference in simulation times 

compared with the simulation times of just the 

electrophysiological model is small and hardly noticeable. 

The same load ratio 1:25 yields the fastest simulations times. 

However, a closer look confirms that the computation load is 

indeed increased. The total run time is increased by 12, 9, 7, 

11, 14 and 18 % for partitions 512 to 16,384, respectively, 

compared with the corresponding simulations of the 

electrophysiological model. Also, the speedup factors are 

below slightly smaller. While the performance on 512 

processors is similar comparing electrophysiological and 

electro – mechanical simulations, the performance on larger 

processor partitions is less good for the electro – mechanical 

model. Performance and thus scaling deteriorates the larger 

the processor partition. However, an interesting result can be 

recognized in figure 2.b. The simulation times for load ratio 

1:38.85 are very close and hardly distinguishable to those of 

load ratio 1:25. They are even below the run times load ratio 

1:10 for the three larger partitions. Previously in the 

electrophysiological simulations, load ratio 1:10 was closer 

to the fastest simulations times. This clearly indicates a shift 

of computational load towards higher load ratios when using 

more complex cardiac models. This clearly needs to be taken 

into account when optimizing the data decomposition 

strategy in the future. 

V. CONCLUSIONS 

This work confirms the hypothesis that more complex 

cardiac models require a higher computational load that 

needs to be taken into account in load balancing and data 

decomposition. However, our simulation results also indicate 

that a simulation of 0.5 s using a detailed electro - 

mechanical model on a detailed anatomical model could be 

carried out in less than two hours. 
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TABLE I 

LOAD BALANCE AND SPEEDUP FACTORS FOR THE ELECTRO-MECHANICAL SIMULATIONS 

Partition 

size 

Nx Ny Nz Total run 

time [s] 

Load balance 

computation 

Load balance 

communication 

Speedup Speedup 

reference N = 512 

Speedup 

between partitions 

512 8 8 8 367.34 0.8200 0.1488 419.86 1.00 1.00 

1024 8 8 16 167.43 0.7850 0.1307 921.22 2.19 2.19 

2048 8 16 16 85.52 0.7382 0.1422 1803.42 4.30 1.96 

4096 16 16 16 46.53 0.6503 0.1270 3314.82 7.90 1.84 

8192 16 32 16 23.93 0.5664 0.1321 6444.60 15.35 1.94 

 

TABLE I 

LOAD BALANCE AND SPEEDUP FACTORS FOR THE ELECTRO-MECHANICAL SIMULATIONS 

Partition 

size 

Nx Ny Nz Total run 

time [s] 

Load balance 

computation 

Load balance 

communication 

Speedup Speedup 

reference N = 512 

Speedup 

between partitions 

512 8 8 8 367.34 0.8200 0.1488 419.86 1.00 1.00 

1024 8 8 16 167.43 0.7850 0.1307 921.22 2.19 2.19 

2048 8 16 16 85.52 0.7382 0.1422 1803.42 4.30 1.96 

4096 16 16 16 46.53 0.6503 0.1270 3314.82 7.90 1.84 

8192 16 32 16 23.93 0.5664 0.1321 6444.60 15.35 1.94 

16,384 32 32 16 13.18 0.4391 0.1070 11698.43 27.86 1.82 
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