
  

Abstract—Orthogonal recursive bisection (ORB) algorithm can 

be used as data decomposition strategy to distribute a large data 

set of a cardiac model to a distributed memory supercomputer. It 

has been shown previously that good scaling results can be 

achieved using the ORB algorithm for data decomposition. 

However, the ORB algorithm depends on the distribution of 

computational load of each element in the data set. In this work 

we investigated the dependence of data decomposition and load 

balancing on different rotations of the anatomical data set to 

achieve optimization in load balancing. The anatomical data set 

was given by both ventricles of the Visible Female data set in a 0.2 

mm resolution. Fiber orientation was included. The data set was 

rotated by 90 degrees around x, y and z axis, respectively. By 

either translating or by simply taking the magnitude of the 

resulting negative coordinates we were able to create 14 data sets 

of the same anatomy with different orientation and position in the 

overall volume. Computation load ratios for non – tissue vs. tissue 

elements used in the data decomposition were 1:1, 1:2, 1:5, 1:10, 

1:25, 1:38.85, 1:50 and 1:100 to investigate the effect of different 

load ratios on the data decomposition. The ten Tusscher et al. 

(2004) electrophysiological cell model was used in monodomain 

simulations of 1 ms simulation time to compare performance 

using the different data sets and orientations. The simulations 

were carried out for load ratio 1:10, 1:25 and 1:38.85 on a 512 

processor partition of the IBM Blue Gene/L supercomputer. The 

results show that the data decomposition does depend on the 

orientation and position of the anatomy in the global volume. The 

difference in total run time between the data sets is 10 s for a 

simulation time of 1 ms. This yields a difference of about 28 h for 

a simulation of 10 s simulation time. However, given larger 

processor partitions, the difference in run time decreases and 

becomes less significant. Depending on the processor partition 

size, future work will have to consider the orientation of the 

anatomy in the global volume for longer simulation runs. 
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I. INTRODUCTION 

HE need for high performance computing (HPC) in the 

simulation of detailed whole organ cardiac models has 

become more pronounced in the past few years [1]. Previously, 

cardiac models were reported to run on HPC systems with 

over 750 processors [2] using a simple data decomposition 

strategy of dividing the data volume in equally sized cubes 

along the Cartesian coordinates with respect to the number of 

processors. We have shown that the more sophisticated 

orthogonal recursive bisection algorithm [3, 4] applicable to 

large scale cardiac simulations on up to 16,384 processors [5 – 

7] on the parallel, distributed memory IBM Blue Gene/L 

supercomputer [8].  

Load balancing and scaling has so far only been applied to a 

single biventricular anatomical data set. In this work we 

investigated how different rotations of the anatomical data set 

influence data decomposition as well as load balancing. 

II. METHODS 

A. Cardiac model 

We chose the ten Tusscher et al. (TT) model [9] as a 

representation of cellular electrophysiology. The diffusion 

terms were represented by the monodomain equation [5 – 7] so 

that we had only one communication cycle per time step. The 

monodomain equation is given by  

 

λ
1− λ

∇(M i∇v) = χCm

∂v
∂t

+ χIion  (equation 1) 

 

with the constant scalar λ that defines an equal anisotropy ratio 

between the extracellular and intracellular conductivity 

matrices Me = λMi, v  is the transmembrane voltage, χ is the 

membrane area to volume ratio, Cm the membrane capacitance 

and Iion the ionic current. For boundary conditions the 

monodomain model yields 

 

n∇(M i∇v) = 0  (equation 2) 

 

with the outward unit normal vector n of the hearts boundary. 

Orthogonal recursive bisection data decomposition for high 

performance computing in cardiac model simulations: Dependence 

on anatomical geometry 

Matthias Reumann, Member, IEEE, Blake G. Fitch, Member, IEEE, Aleksandr Rayshubskiy, David 

U. J. Keller, Member, IEEE, Gunnar Seemann, Olaf Dössel, Member, IEEE, Michael C. Pitman, John 

J. Rice  

T 

2799

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



  

 
Fig. 1. The figure illustrates how the differently oriented anatomical data sets were created. A projection of the ventricles of the Visible Female data set, National 

Library of Medicine, Bethesda, Maryland, USA, is shown on the left in x – y coordinates. A rotation of the data set by 90 degrees around the z – axis (not shown 

in schematic) is achieved by simply swapping x and y coordinates of each point (middle). However, the new y value ynew is the negative x value due to rotation 

matrix. For the computation we only store positive y values. This can be achieved by taking the magnitude of x (top right), ie. flipping the data set across the x 

axis or by translating the data set along the y axis so that all elements of the data set are positive (bottom right). 

 

 

The model includes fiber orientation to take heterogeneous 

anisotropic conduction into account. The monodomain 

reaction – diffusion system was implemented using an operator 

splitting approach and the finite difference method [5, 10 – 12] 

based on the regular Cartesian grid of the anatomical model. 

B. Anatomical data sets 

We created 14 anatomical data sets with different orientation 

of the Visible Female ventricles (National Library of 

Medicine, Bethesda, Maryland, USA).  The original data set 

consists of over 128.9 M elements in an array of 537 by 492 

by 488 voxels with approximately 32.5 M active ventricular 

elements. We mapped this data set to a 544 by 544 by 544 

volume, ie. the total volume was increased to approximately 

161 M voxels. On the one hand, we simply padded the original 

data set by keeping the original data coordinates and filling the 

remaining volume with bath medium (data set 1). On the other 

hand, we centered the original volume inside the new volume 

(data set 2) to have an equal amount of bath medium around 

the original data set. 

We then rotated both data sets by α = 90 degrees around the 

x, y and z axis, respectively. The rotation matrix for a rotation 

around the z axis is given by 
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   (equation 3) 

 

Thus, negative coordinates result from a rotation of α = 90 

degrees. To eliminate this, we took both the magnitude of the 

new coordinates (denoted by MagRot from hereon) or we 

translated the rotated data set along the respective axis by 544 

(denoted by TransRot from hereon). Figure 1 illustrates the 

two new data sets created by the MagRot and TransRot 

operation for the rotation around the z axis. Thus, by applying 

these two operations on both data sets in the 544
3
 volume 

yields six anatomical data sets with different orientation in the 

volume. We denote these data sets with noRot, MagRotX, 

MagRotY, MagRotZ, TransRotX, TransRotY and TransRotZ to 

indicate the operation performed on the original data set 

(noRot) and the axis around which the rotation was performed. 

For the data set which was centered, the same nomenclature 

applies with the difference that we included the term Center in 

the notation, e. g. CenterMagRotX and CenterTransRotX. 
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Fig. 2. This figure shows the data decomposition with respect to tissue elements vs. total elements in subvolume for data set 1 (a) and data set 2 (b) with the 

original anatomical orientation. Differences in distributions are hardly noticeable. However differences exist as can be seen especially for larger subvolume 

sizes when comparing data sets 1 and 2 and their respective rotations. The difference in run times is less than 10 s for data set 1 and the respective rotations 

(c) and just above 10 s for data set 2 and its rotations (d). The average communication and computation times hardly differ for any anatomical orientation in 

the data sets. 

 

C. Data decomposition and communication 

The Laplacian operator in equations 1 – 2 require only 

neighboring elements for the computation of the diffusion 

term, which enables us to decompose the data sets and 

distribute the subvolumes onto a distributed memory parallel 

supercomputer. A list of x, y and z coordinates and the 

respective computational load value is the input for the ORB. 

We use load ratios 1:1, 1:2, 1:5, 1:10, 1:25, 1:38.85, 1:50 

and 1:100 for non – tissue vs. tissue element loads. Tissue 

elements are associated with a cell model represent 

ventricular tissue. Non – tissue elements do not represent 

cardiac tissue and no cell model is computed at these points. 

Since our previous work [5, 7] shows the best performance 

for load ratio 1:25 we use only 1:10, 1:25, and 1:38.85 for 

the simulations to cover the adjacent load ratios also. The 

ORB algorithm creates a binary tree with n levels and thus 2
n
 

subvolumes. The anatomical subvolumes in x – y – z 

coordinates can be conveniently mapped onto the Nx – Ny – 

Nz Blue Gene/L processor partition. Communication between 

adjacent subvolumes is carried out by standard non – 

blocking MPI functions where the communicated values at 

the boundaries of the subvolumes are stored in a ghost layer 

surrounding each subvolume. The data decomposition 

strategy is applied to all 14 data sets. The simulations are 

performed as described in [5, 7]. Timing data for 

computation, communication and total run time is gained by 

running 1 ms simulations on a 512 processor Blue Gene/L 

partition. 

III. RESULTS 

A. Data decomposition 

The decomposition results for all data sets show a similar 

pattern with respect to tissue elements vs. total elements per 

subvolume (fig. 2.a – b). Load ratio 1:1 will result in equal 

subvolume sizes with large differences in tissue elements per 

subvolume. In contrast, load ratio 1:100 will have the 

smallest distribution of tissue elements per subvolume but 

the widest spectrum in subvolume sizes. However, the 

decomposition is not equal for all data sets. This can be 

recognized best when looking at the larger subvolume sizes 
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where the distribution is not so dense (fig. 2.a – b). 

 In general, the greater the differences in model weights 

for computational load of tissue and non – tissue elements, 

the wider the spectrum of subvolume sizes and the smaller 

the spectrum of tissue elements per subvolume. 

B. Timing data 

Figure 2.c – d shows the average computation and 

communication times as well as the maximum run time for 

all simulations with load ratio 1:25 which was the fastest in 

all simulations. However, we note that the simulations with 

load ratio 1:38.85 were faster than the simulations for load 

ratio 1:10. In our previous simulations [5] with an overall 

smaller data set, the simulations of load ratio 1:10 performed 

better. The timing data shows that the total run time for all 

simulations is between 345.85 s and 354.38 s for data set 1 

and its rotations and between 345.84 s and 355.69 s for data 

set 2 and the respective rotations. Thus, the difference 

between the fastest simulations on all data sets is about 10 s. 

It can also be noted that the difference between data sets and 

rotations of average computation time is within 1 s for all 

simulations. Also, the average computation time is within 1.5 

s for all simulations.  

IV. DISCUSSION 

The data decomposition shows that the ORB algorithm 

output does depend on the orientation of the anatomical data 

set in the data volume. The differences in data 

decomposition lead to differences in run time. While the 

average computation and communication times hardly differ 

between data sets and rotation, the total run time shows 

differences up to 3%. This difference seems small but might 

become significant for longer simulation times. If a 

simulation with 10 s simulation time were to be carried out, 

the difference in run time can be projected to be 100,000 s, 

ie. almost 28 h. In simulations of cardiac arrhythmia, the aim 

is to run simulations of minutes and even hours to understand 

the progression of the arrhythmia eventually. Hence, the 

orientation of the anatomy in the data set become significant 

when determining the ideal data decomposition for optimal 

load balancing and run times.  In contrast, if larger processor 

partitions are used in the simulations, the orientation of the 

anatomy might become less significant. A larger number of 

subvolumes are created on larger processor partitions. E. g. 

the ORB algorithms divides the subvolumes for a 512 

porcessor partition in half to create 1024 subvolumes for the 

1024 processor partition. So computational load differences 

are reduced also. However, the exact influence on the 

communication overhead remains unclear. More 

investigation is needed here. 

In the presented study, the data decomposition is not 

carried out during run time. A change in the simulation code 

could include it at the beginning of the simulation. This will 

add a fixed one time overhead to the simulation. An 

exception is a data decomposition optimization that adjusts 

the load balancing during run time, i.e. the data 

decomposition is carried out at the beginning of the 

simulation, several time steps are computed and timing data 

of the simulation is used as new input to adjust the data 

decomposition to yield an optimized load balance. In this 

case, the overhead of computing the data decomposition for 

load balancing increases. However, often simulations are 

based on the same decomposition which allows the data 

decomposition to be carried out only once offline. 

V. CONCLUSIONS 

This work confirms the hypothesis that the data 

decomposition using the ORB algorithm is dependent on the 

anatomy and its orientation in the data volume. The 

difference in run time on a 512 processor partition will have 

a greater impact on long simulation runs. Thus, depending on 

the processor partition size, future work will have to consider 

the orientation of the anatomy in the global volume for 

longer simulation runs. However, since the difference in run 

time for short simulation times is small comparing all 

orientations in the presented work, it can be neglected in the 

data decomposition strategy for short simulation times. 
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