
  

 

Abstract— Glioma is the most aggressive type of brain 

cancer. Several mathematical models have been developed 

towards identifying the mechanism of tumor growth. The 

most successful models have used variations of the 

diffusion-reaction equation, with the recent ones taking into 

account brain tissue heterogeneity and anisotropy. 

However, to the best of our knowledge, there hasn’t been 

any work studying in detail the mathematical solution and 

implementation of the 3D diffusion model, addressing 

related heterogeneity and anisotropy issues. To this end, 

this paper introduces a complete mathematical framework 

on how to derive the solution of the equation using different 

numerical approximation of finite differences. It indicates 

how different proliferation rate schemes can be 

incorporated in this solution and presents a comparative 

study of different numerical approaches. 

I. INTRODUCTION 

LIOMAS are the most malignant form of brain 

tumor, which differ from other tumors, because of 

their highly aggressive and diffusive behavior. Since 

90s, many important diffusive models have been 

introduced [1-3], with the most recent ones taking brain 

tissue heterogeneity and anisotropic cell migration into 

account. According to Jbadbi [3], the spatiotemporal 

diffusion equation that describes glioma growth is  

                        (1) 

where c(x,t) is the tumor concentration in position x at 

time t,  is the diffusion tensor, i.e. a 3x3 symmetric 

matrix that expresses anisotropy of cell migration,  and 

div are the gradient and divergence operators 

respectively and  is the net cell proliferation rate. 

Variant formalisms of  have been proposed [4], with 

the main ones following either the exponential law 

                                  , (2) 

or the Verhulst law 

                                (3) 

or Gompertz law 

                                (4) 
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where  denotes the proliferation rate constant and  is 

the maximum value that  can reach. 

Due to the spatial dependence of D, an analytical 

solution of (1) cannot be acquired; therefore, it has to be 

numerically approximated. Finite differences (FDs) are 

commonly used in diffusive models. By using FDs, a big 

system of equations arises, the iterative solution of 

which yields the approximated tumor cell concentration 

at a desired time point. Different numerical schemes for 

approximating partial derivatives are able to differentiate 

the emerging system, thus the way it is solved.  

Up to now, the various implementations lack a firm 

mathematical background on the derivation of the 

system, with concrete assumptions on the approximation 

scheme. The main objective of this paper is to provide 

the direct formalism of the derived linear system, for the 

widely used FD schemes, namely forward Euler (FE), 

backward Euler (BE), Crank Nikolson (CN) and θ-

methods. These formalisms are designed for 3D, 

heterogeneous and anisotropic brain tissue and entail the 

general form of , so that one could use any net 

proliferation rate. We also present how equations (2),(3) 

and (4) are tailored to the model. Finally, we make a 

comparative study of the different FD numerical 

schemes by analyzing experimental results. 

II. METHODS 

Equation (1) is a partial 2
nd

 order differential equation. 

Before hunting up a direct expression of the linear 

system that iteratively solves it, (1) is expanded in three 

spatial dimensions. Assume that the diffusion tensor 

D(x) at a point x=(x1, x2, x3) is: 

                   (5) 

Then, by using definitions of  and , (1) becomes: 

                (6) 

The next step is to use FDs so as to approximate the 

solution of (6). For approximating the partial derivatives, 

i) FE, ii) BE, iii) θ- and iv) CN schemes are used. 

A. Forward Euler Method (FE) 

At first, assuming that initial and boundary conditions 

have been defined, we study how FE approximates the 

solution of (6) for a  grid. If 

c(nΔT,iΔX,jΔY,kΔZ)≡ , Dpq(iΔX,jΔY,kΔZ)≡ , 

i , j , k  and 

, then the partial derivatives of (6) in point 
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(iΔX,jΔY,kΔZ) can be approximated as 

                                 

                              

                         

            

                          (7) 

and similarly for , , ,  and . 

If any of the neighboring  is a boundary point, then 

its value will be as initially defined. Continuing, by 

substituting the approximations (7) to (6), we derive: 

+ +   

+ + +  

+ + +  

+ +  +  

+ + +  

+ + +  

+ +  (8) 

or equivalently: 

   (9) 

where 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      (10)  

 

If  the vectorized version of  at time m  is taken, as 

 (11) 

 

then, the overall solution of the equation at time , 

for given , can be found by solving iteratively 

 where A is a  

atrix with its elements defined as: 

 

where:  

     (12) 

and F a vectorization operator that vectorizes f( ) as  

 (13) 

A is a  symmetric, sparse, 19-

diagonal matrix, with its form being visualized in Fig.1, 

where all light gray areas have zero values. 

 
After having acquired A, a direct solution can be found 

by iteratively calculating 

                        (14) 

where I is the  identity matrix. This is 

the solution of the FE. This is called forward, because 

the next-time approximation of concentration can be 

directly estimated as a linear combination of the 

previous-time approximation and is easy to implement, 

but numerical stability has to be ensured. As proven in 

[5], this method is stable giving reliable results when 

         (15) 

B. Backward Euler (BE) 

Similarly, the density of glioma cells at time t, using BE, 

can be derived by iteratively solving the system: 

                 -  (16) 

till time  is reached, with A and F being the same with 

(12) and (13) respectively. In each iteration the system 

can be expressed with a big, sparse, symmetric and 

positive definite matrix; an iterative method for solving 

 
Fig. 1.  Sparse Matrix A: White areas have zero values, thick lines 
are 3 diagonals in a row and thin lines are single diagonals. 
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linear systems, e.g. the conjugate gradient method can be 

used. Unconditional stability and accuracy are 

advantages of this method, whereas computational and 

storage load that has to be considered [6]. 

C. θ-methods/Crank Nikolson (CN) 

The θ-methods use a balancing parameter θ  

so as to combine forward and backward numerical 

schemes concurrently. By using θ-methods we get 

 - (17) 

where . As in BE, a method for solving linear 

systems is required. The θ-methods are flexible due to 

choice of parameter θ but higher computational and 

storage load are required [6]. CN is a θ-method for θ=½.  

In Table I, the formulation of the iterative linear 

systems that produce the approximated solution of (6) is 

presented according to various selected methods. Based 

on this, we have implemented models for glioma growth, 

directly in 3D using C++ (the authors can be contacted 

for more details). 

 

D. Vectorization Operator 

It is interesting to study how operator F is chosen for 

the mainly used proliferation rates of (2),(3) and (4). If 

the net proliferation rate is given by (2) holds, then 

according to (13): 

      (18) 

 or equivalently: 

                                      (19) 

Next, if the net proliferation rate is given by (3), then: 

           (20) 

 or equivalently: 

                 . (21) 

The definitions of  and are given in Table 2. 

Lastly, if the net proliferation rate is given by (4) holds, 

then according to (13): 

              (22) 

 or equivalently: 

           (23)  

In Table II, a summary of vectorization operator for the 

commonly used proliferation rates is presented. 

III. RESULTS AND DISCUSSION 

In order to study the performance of the different 

numerical schemes presented, a simplified test case of 

the pure diffusion equation is used, for which there is a 

known analytical continuous expression of the solution. 

Hence, the magnitude of each numerical scheme 

deviation from the real solution can be studied, which 

serves here as ‘ground truth’ for validating our numerical 

approximations.   

A. Spherical homogeneous test tumor 

To validate our methodology, it is assumed that tumor 

growth in 3D, unbounded, isotropic (i.e. D is constant) 

and homogeneous region exhibits a pure diffusion 

behavior (i.e. ). The tumor has initially a 

concentration  and it is constrained in a sphere of 

radius  (Fig. 2). Due to symmetry, the concentration of 

glioma depends only on the distance from the center of 

the sphere  and it is given by the expression [7]: 

 

                 (24)  

 

B. Testing and Simulation Description 

In our tests, the model is adapted to approximate (24), 

by using the following parameters:   

, , , 

,  points and 

. Five different simulations were 

run for 200 days, using FE, three θ-methods for θ=0.25, 

θ=0.5 (CN) , θ=0.75, and BE performed on a Pentium 4 

at 3.8 GHz.  

In Fig.3, the evolution of cell concentration in time is 

presented, with respect to , with lines corresponding to 

results from analytical expression (24), while dots 

representing what simulation with CN yields.  Fig. 3 

shows a very good agreement between these results; 

however a more rigorous investigation would require an 

error estimation analysis. 

 
Fig. 2. Left: The initial spherical tumor of radius . Right: The 

initial  tumor concentration according to  at time t=0 

TABLE I 

DIRECT EXPRESSIONS OF THE ITERATIVE LINEAR SYSTEMS 

Numerical 

scheme 
Iterative linear system solving (6) 

Forward 
Euler  

Backward 

Euler 
 

θ-methods 
 

 

 

 

TABLE II 
VECTORIZATION OPERATOR FOR DIFFERENT PROLIFERATION RATES 

Proliferation 

Rate 

Constan

t Rate 

f(c) 
Vectorization Operator  

Exponential   
Verhulst 

(logistic) 
  

Gompertz   
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C. Error Estimation 

In order to estimate the error that each scheme yields 

the normalized mean absolute error  is introduced. Due 

to symmetry,  at time  is computed as 

               100% (25) 

 

In Table III, the estimated  for each scheme on day 10, 

100 and 200 of simulation is reported. Moreover, the 

overall simulation times are also reported. The highest  

for all five schemes is on 10
th

 day, while it decreases to 

values  on the 200
th

 day. FE error is the lowest 

on 10
th

 day, i.e. 6.36%, but overcomes all other schemes 

on 200
th

 day, reaching 0.57% at the 200
th

 day. CN is the 

scheme that reaches the lowest error value at 200
th

 day at 

0.23%. In Fig.4, a logarithmic graph of  in time is 

presented, for each scheme. It is noticeable that all 

schemes initially produce higher errors. A possible 

explanation is that the initial concentration  has 

an abrupt step descent at r=10mm, as seen in Fig. 2 

(right). This makes the approximation of the partial 

derivatives at the edge of this step erroneous for all 

schemes. However, as simulation continues, all schemes 

tend to significantly decrease . Continuing, one can 

observe that  decreases to values <1% on day 40, 75, 

94, 143 and 156 for FE, 0.25-method, CN, 0.75-method 

and BE respectively. FE error has a remarkable descent 

till day 42, but later decreases smoothly and finally 

overcomes all other schemes. BE produces the highest 

error, till day 186, when FE overcomes it. As expected, 

approximation with θ-methods is more accurate than BE 

throughout all days and more accurate than FE in most 

time. θ-method for θ=0.25 initially tends to have a steep 

descent to error 0.3%, but later reaches a balancing value 

higher than CN. θ-method for θ=0.75 has a smoother 

descent, being always higher than CN. Lastly, CN 

(θ=0.5) seems to have the best general performance, 

reaching the lowest error 0.23% on day 200. 

Thus, CN seems to yield more accurate approximations 

of . However, if there is room for sacrificing 

accuracy for faster model simulations, then FE should be 

used, since from Table III it’s derived that FE is 4.63 

times faster than CN. Even if one chooses FE, that is the 

worst case scenario, error  doesn’t overcome 0.6% 

IV. CONCLUSION 

This paper presents a complete, FDs’ based, 

framework for the mathematical solving of the 

anisotropic, heterogeneous and 3D diffusion-reaction 

equation simulating either the growth of glioma or other 

phenomena where diffusive models are applicable. 

Moreover, the introduction of the vectorization operator 

gives the flexibility to include any proliferation rate into 

the model. Lastly, a performance study of different 

numerical schemes is presented based on an analytical 

expression that can be derived for the pure diffusion 

equation. 
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TABLE III 

ERROR   AFTER 10, 100 AND 200 DAYS 

Scheme 10 days 100 days 200 days Simulation Time 

FE 6.36% 0.89% 0.57% 3’53” 

θ-method 

(θ=0.25) 
9.73% 0.43% 0.33% 18’13” 

CN 9.83% 0.91% 0.23% 19’01” 

θ-method 

(θ=0.75) 
10.17% 1.43% 0.35% 20’16” 

BE 11.33% 1.95% 0.50% 22’31” 

 

 
Fig. 3.  The evolution of  after 10, 100 and 200 days 
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Fig. 4. Logarithmic visualization of error  in time 
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