
 
 

 
 

 

1 

Abstract— The increasing use of high-frequency (kHz), long-
duration (days) intracranial monitoring from multiple 
electrodes during pre-surgical evaluation for epilepsy produces 
large amounts of data that are challenging to store and 
maintain.  Descriptive metadata and clinical annotations of 
these large data sets also pose challenges to simple, often 
manual, methods of data analysis.  The problems of reliable 
communication of metadata and annotations between 
programs, the maintenance of the meanings within that 
information over long time periods, and the flexibility to re-sort 
data for analysis place differing demands on data structures 
and algorithms.  Solutions to these individual problem domains 
(communication, storage and analysis) can be configured to 
provide easy translation and clarity across the domains.  The 
Multi-scale Annotation Format (MAF) provides an integrated 
metadata and annotation environment that maximizes code 
reuse, minimizes error probability and encourages future 
changes by reducing the tendency to over-fit information 
technology solutions to current problems.  An example of a 
graphical utility for generating and evaluating metadata and 
annotations for “big data” files is presented. 

 INTRODUCTION 

Multi-scale electrophysiology requires collection and 
analysis of  data over a wide range of spatial and temporal 
scales, satisfying the criteria of “big data” [1] .  Multi-scale 
data creates a range of difficult technical issues including 
efficient data formats and storage solutions. Several of these 
needs specific to the acquisition, storage, and analysis of 
data for systems electrophysiology spurred the creation of a 
new file format, Multi-scale Electrophysiology Format 
(MEF) [2].  In addition to the raw data, another set of 
problems arises concerning the handling of the data that 
describe or are attached to the raw data; i.e., metadata and 
annotations.  While some aspects of metadata and 
annotations from multi-scale recordings are similar to those 
for all types of data acquisition (e.g., subject identification, 
dates, filenames), several other aspects are unique to multi-
scale acquisition from humans, such as patient privacy issues 
and scalability.  The difficulties surrounding human multi-
scale data acquisition (e.g., cost, ethics, supremacy of patient 
needs over scientific questions) emphasize another issue 
regarding the handling of scientific data: analyses commonly 
involve data that were collected over multiple years on an 
array of recording systems by different people asking a 
range of questions who are often located at different 
institutions.  This creates a range of technical problems, 
including the problem of communicating the conditions 
under which data were acquired, variations in data 
acquisition parameters (e.g., sampling frequency) and the 
sheer numbers of observations inherent in such large data 

files.  These challenges can be grouped into three problem 
domains: communication between users and applications, 
storage across time and institutions, and data analysis.  
Software solutions within each domain have been optimized 
to solve the problems that dominate that particular domain, 
but a new problem arises when research questions bridge 
multiple domains.  Smaller, more focused data sets often 
avoid dealing with these problems by a range of simpler 
solutions that may not scale to multi-terabyte data files. 
(Figure 1) 

For example, consider computing the spectral power 
within a fixed bandwidth during each second for data 
recorded from 50 patients, where data from 300 
channels/patient were obtained for several days.  
Furthermore, imagine that some patients were recorded at 
one sampling frequency, others at a second frequency and 
others at a third.  Finally, imagine that the results are to be 
sorted based on the anatomical location of each electrode.  If 
the scope of the project involved fewer channels, patients or 
shorter recordings, many of the difficulties in this scenario 
could be handled manually (e.g., a lab notebook or a 
spreadsheet).  Several solutions to different parts of this 
problem would seem reasonable: each file could be filtered 
for its specific sampling frequency, each file could be 
filtered and down-sampled to the lowest sampling 

Metadata and Annotations for Multi-scale Electrophysiological Data  
Mark R. Bower, Ph.D., Matt Stead, M.D., Ph.D., Benjamin H. Brinkmann, Ph.D., Kevin Dufendach, 

Gregory A. Worrell, M.D., Ph.D 
 

Figure 1. Increasing amounts of annotations and metadata require 
increasingly automated solutions to data management.  In addition, 
the timeframe in which the annotations must be generated or 
retrieved also affects the degree of automation required. 

  This work was supported by the National Institutes of Health (Grant K23 NS47495), State of Minnesota Partnership Grant and Epilepsy Therapy 
Development Project grant from the Epilepsy Foundation of America. 
  M.R. Bower, M. Stead, B.H. Brinkmann, K. Dufendach and G.A. Worrell are with the Mayo Systems Electrophysiology Lab, Rochester, MN 55905 
USA (507-255-9268; 507-284-4795; e-mail: bower.mark@mayo.edu). 

2811

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



 
 

 
 

 

frequency, the files or the results could be moved to folders 
based on recording location anatomy, or file-specific 
information could be stored in and extracted from the header 
of each file.  This particular analysis, however, involves 
15,000 files, many of which could have sizes exceeding one 
terabyte.  In any given file, a user might want to note 
hundreds or even thousands of events, such as the presence 
of EEG spikes or artifacts, changes in behavioral state, 
where the terms used might not be standardized across 
patients or hospitals. 

Solutions to such problems could be based on somewhat 
divergent ways of looking at data in general (Figure 2).  
Storing information in an efficiently searchable format that 
also reduces the incidence of errors also has a long history 
that has centered on the concept of databases (e.g., 
GenBank) [3], virtually all of which use a handful of tested 
tools with a long track record.  The SQL programming 
language lies at the heart of virtually all database software 
whether the vendor is Oracle, Microsoft or an open-source 
provider.  Open Database Connectivity (ODBC) provides a 
widely accepted set of programming standards that provide 
easy access to database data across a range of programming 
languages.  While storing metadata and annotations in a 
database provides users with increased access to their data in 
terms of searching and sorting and reduce probability of 
error or data corruption, these methods are of less use for 
data analysis or communication. 

The situation regarding the preferred programming 
language for data analysis is even less clear.  Several 
programming languages have been used in systems 
electrophysiology (e.g., C, C++, R, Java, Fortran, Matlab, 
Python) in conjunction with range of operating systems (e.g., 
Windows, Mac OS X, Linux).  The advent of web-based 
programming languages has added even more options.  
Several programming concepts, however, have attracted a 
great deal of attention in the software community, including 
object-oriented programming, software “design patterns”, 
and agile programming [4-6], but few have translated 
directly to improvements in either the storage or 
communication of scientific data. 

Arranging information in a context-free manner for 
communication between computers or between human 
readers has often focused on methods to serialize data; that 
is, methods by which the meaning within data is maintained 
even when the data must be broken into a series of values for 
transmission along a communication channel (e.g., TCP/IP, 
XML, PDF).  While optimal for maintaining the meaning 
within communications, these formats are rarely used in 
either databases or data analysis software.  Providing XML 
storage of information allows users to store intermediate 
data analysis results when a connection to the database does 
not exist or when users do not want to persist intermediate 
results into the database. 

In each problem domain, general solutions to a vast range 
of problems have been optimized through decades of 
research and products.  Many of these solutions are freely 
available in the form of open-source software, which could 
provide the added benefit of freeing data from being tied to 
the particular software vendor that supplied the recording 
equipment; i.e., “vendor lock-in”.  In this paper, we describe 
ongoing work to develop MAF, the Multi-scale Annotation 
Format, which attempts to find a set of software solutions 
within each problem domain that can interact with one 
another to provide an integrated efficient, fast, error-
minimizing, reusable, open-source and scalable suite of 
software tools tailored to handling “big data” metadata and 
annotations. 

 METHODS AND RESULTS 
The difficulties involved in bridging technological 

domains can be seen in the diversity of names that each 
applies to a standardized description of contents (e.g., 
“schema/metadata” for databases, “DTD/schema” for XML, 
“API” for programs).  MAF is described as a “format” to 
reduce the confusion with similar descriptions applying to 
any one of the three domains.  MAF consists of three sub-
formats that must be consistent with one another.  This 
encourages use of a proven paradigm of “programming to an 
interface”, shifting the focus of software development from 
defining what elements a solution must have to describing 
what a solution must do.  An interface can be thought of as a 
contract between programming language creators and users 
regarding the names of functions within a software package 
and the number and types of variables that those functions 
expect.  One analogy is the three-pronged electrical outlet: 
the power company (analogous to software writers) need 
only worry about providing electrical power to electrical 
outlets, without considering how consumer electronics (that 
is, “users”) will use the electricity, and the users don’t have 
to worry about how the power is generated.  The producer 
and the user need only agree on the physical dimensions of 
the plug and the properties of the electrical current.  This 
agreement becomes the “interface” between the producer 
and the consumer, freeing each to handle their respective 
tasks independently of the other.  The goal of MAF can be 
stated more concisely as an attempt to find interfaces that 
provide solutions within problem domains that can interact 
flexibly and easily with the interfaces chosen in the other 

Figure 2.  Problem domains involved in handling multi-scale 
electrophysiological data.  An integrated solution would take 
advantage of the strengths of existing solutions that would allow 
easy translations between the domains. 

2812



 
 

 
 

 

problem domains.  “Programming to an interface” decouples 
the problem domains, allowing developers to improve a 
solution in one domain without affecting the existing 
solutions in the others.  The language chosen for the 
development of MAF was Java written in the Eclipse IDE 
(Integrated Development Environment), because Java 
objects can be loaded easily into several different interactive 
environments, including Matlab [7], Jython [8] and Groovy 
[9]. 

Several factors influenced the choice of the 
communication format.  The eXtensible Markup Language 
(XML) emphasizes clarity of information transmission and 
flexibility of content [10].  In the context of neuroimaging 
studies, the XML-based Clinical Data Exchange (XCEDE) 
schema was developed by the Biomedical Informatics 
Research Network (BIRN [11]) to document research and 
clinical studies. The schema easily represents “many-to-
many” relationships (e.g., between data files and analyses, 
where one analysis can use multiple files, and one data file 
can be used in multiple analyses), which can pose a problem 
for hierarchical schema.  XCEDE proposes assigning 
reference IDs to each element that can subsequently be used 
flexibly.  This use of reference IDs to relate data elements of 
different types is a central organizing principal underlying 
MAF.  The XML format used in MAF extends this theme 
into objects more directly related to experimental data 
collection (e.g., subjects, timestamps), leading to the 
XREDE (XML-based Research Data Exchange) schema 
(Figure 3).  This approach integrated easily with the other 
problem domains, particularly with that of data storage, 
because it allows for representations of arbitrary relations 
between data elements.  XML tags extend naturally to 
object-oriented classes representing subjects, recording 
episodes, analysis tasks, EEG events, etc. (Figure 4).  In 
particular, we chose the JDOM package of XML parsers, an 
integrated set of objects that can be loaded easily into any 
Java-capable environment [12]. 

Data storage technologies include a broad range of 
options: files within hierarchical folders, XML, spreadsheets 

and databases each offer advantages.  Storing data within a 
system of hierarchical folders distributes information across 
the folder tree; the source of data in a file is a function of the 
chain of parent folders.  This tends, however, to enforce, 
fixed relationships (e.g., patient/session/channel), does not 
prevent errors (e.g., if a file is misplaced or dropped) and is 
difficult to search.  Spreadsheets, too, bias storage towards a 
fixed relationship, holding all information in a single table, 
and attach meaning to location within a table.  As with 
hierarchical files, it is difficult to catch errors due to 
misplaced or dropped data.  Databases were designed 
specifically to address these issues.  Relational databases, in 
particular, minimize errors by enforcing data integrity rules, 
requiring all related information to be entered in a state that 
is consistent with the MAF database schema, preventing the 
deletion of data that are required by an existing element.  
Relational databases link related information via unique 
identification numbers, allowing arbitrary relations to be 
extracted after data have been entered and preventing 
accidental deletion of necessary data.  Another advantage of 
database storage is that information related to each entry is 
stored in only one location; if an error is identified in an 
entry it only needs to be corrected in one place.  MySQL, a 
popular relational database, was chosen as the initial 
database underlying MAF, because it is freely available, is 
easy to install and use, and publishes drivers for most ODBC 
standards [13].  Combined, MAF integrates an object-
oriented class, an XML element and an MySQL table for 
each data component, along with translation methods for 
converting between the three (Figure 4). 

The first project to be implemented using these guidelines 
was an interactive, Matlab-based data viewer for adding and 
visualizing neurological annotations to patient EEG, which 
is called “eeg_view” (Figure 5).  Annotations are label-time 
stamp pairs associated with neurological events identified 
visually by an expert or automatically by a program that are 
generally associated with a specific analysis task.  
Annotations may be inspected visually, allowing users to 
accept or reject existing annotations and add events that 
were missed.  The XREDE format can note the annotations 
that were rejected by the user, as well as which annotations 
were added manually, so that false positive detections can be 
counted.  The user can load or generate events for multiple 

grammar { 
  
start = element XREDE { 
 element-Subject*& 
 … 
 } 
  
element-Subject = element Subject { 
 attribute id {text}?& 
 attribute dbid {text}?& 
 attribute name_first {text}?& 
 attribute name_last {text}?& 
 attribute Subject_nbr {text}?& 
 attribute data_dir {text}?& 
 attribute created {text}?& 
 element-Episode* 
 } 
… 
 

Figure 3. A portion of the XREDE XML schema written in 
RELAX NG Compact format.  The use of XML validation pro-
vides another check on data integrity, while documenting the 
relationships that must hold in both the data analysis classes and in 
the database. 

Figure 4. The Class-Element-Table integration for annotations.  
While it is possible to translate directly between objects and 
database storage, the use of XML validation in an intermediate 
state provides a check on data integrity, while documenting the 
relationships that must hold in both the data analysis classes and in 
the database. 

2813



 
 

 
 

 

EEG files.  Annotations are saved to an XML file 
corresponding to the MAF format.  The XML file can be 
transferred directly to another program or stored to the 
database.  Associating events with tasks in the database 
allows users to select different sets of events based on the 
method by which they were generated, combine events 
generated by different sources, or keep only those events 
that have been designated as the “gold standard”.  The 
resulting database subsets are returned in XREDE format, 
which can then be opened by the MAF-capable EEG viewer. 

 DISCUSSION 
It should be stressed that the technologies selected and 

combined in this paper represent only one possible solution 
to the problem of managing metadata and annotations in big 
data.  Many more solutions are possible with current 
technology, and future developments promise to expand 
these opportunities.  For example, the current choice of 
technologies described in this paper underutilizes the power 
of browser-based technologies, e.g., Google Web Toolkit, 
which allows existing Java code to run within a browser 
without modifications [14].  Recent developments in 
database technology offer several promising technologies:  
object-relational map databases utilize an intermediate 
description of classes to automate the storage and retrieval of 
data within objects into a relational database (e.g., Hibernate 
[15] and DataNucleus [16]); object-oriented databases store 
the objects themselves into a modified relational database 
(e.g., db4o [17]); distributed databases allow storage of very 
large data objects (e.g., Project Voldemort [18]), which 
could be particularly useful for multi-scale electro-
physiology.  The suite of technologies chosen should offer 
real-world assistance to challenges in ways that bridge the 
problem domains, while providing for their own future 
replacement; technology lock-in can be just as insidious a 
problem as vendor lock-in.  Solutions that rely on a feature 
specific to one particular technology should be avoided. 

 CONCLUSION 
Multi-scale electrophysiology poses challenges both in 

terms of the amount of data and the complexity of analyses.  
Attempting to solve these challenges by focusing either on a 
single problem or one particular technology often creates 
new problems in transferring solutions from one task to the 
next.  General-purpose solutions exist to the problems of 
communication, storage and analysis of metadata and 
annotations that can alleviate the problems of complexity 
and lack of portability, but their use requires integration of 
software tools tailored to both clinical and research needs.  
The Multi-scale Annotation Format (MAF) integrates 
proven solutions within each of the problem domains of 
communication, storage and analysis in the forms of XML, 
relational databases and object-oriented programming by 
promoting a class-element-table approach to data 
representation.  These proven technologies not only offer 
solutions to current problems, but also modularize the 
problem domains, providing the opportunity for future 
improvements without impacting existing experimental 
information.  The programming API, XREDE schema and 
MySQL database description can be found at the website for 
the Mayo Systems Electrophysiology Lab (MSEL) and are 
freely available under GNU open-source licensing, along 
with documentation describing the integrated use of these 
tools [19]. 

REFERENCES 
[1] Howe D, Costanzo M, Fey P, Gojobori T, Hannick L, Hide W, Hill 

DP, Kania R, Schaeffer M, St Pierre S, Twigger S, White O, Yon 
Rhee S. (2008) Big data: The future of biocuration.  Nature. 2008 Sep 
4;455(7209):47-50. 

[2] Brinkmann BH, Bower MR, Stengel KA, Worrell GA, Stead M 
(2009) Large-scale Electrophysiology: Acquisition, Compression, 
Encryption, and Storage of Big Data. J Neurosci Methods. 2009 May 
30;180(1):185-92. 

[3] DA Benson, MS Boguski, DJ Lipman, J Ostell, BF Ouellette, BA 
Rapp and DL Wheeler. GenBank.  Nucleic Acids Research 1999. 
27(1):12-17. 

[4] Eckel, B. (2006) Thinking in Java. Prentice Hall. 
[5] Gamma E., Helm, R, Johnson R, Vlissides JM (1994) Design Patterns: 

Elements of Reusable Object-Oriented Software. Addison-Wesley.  
[6] Kuchana P (2004) Software Architecture Design Patterns in Java. 

Auerbach Publications. 
[7] Matlab is a registered trademark of Mathworks, Inc., Natick, MA. 

http://www.mathworks.com. 
[8] http://www.jython.org 
[9] http://groovy.codehaus.org/ 
[10] http://www.w3.org/XML 
[11] http://www.nbirn.net 
[12] http://www.jdom.org/ 
[13] http://www.mysql.com/ 
[14] http://code.google.com/webtoolkit/ 
[15] http://www.hibernate.org 
[16] http://www.datanucleus.org 
[17] http://www.db4o.org 
[18] http://www.project-voldemort.org 
[19] http://mayoresearch.mayo.edu/mayo/research/msel/ 

 

Figure 5.  Screen capture from the multi-scale EEG viewer.  The 
viewer provides an interactive display of continuously-recorded 
macro- and microelectrode files and user-defined annotations.  
Annotations are stored in a database via an XML file. 

2814


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

