
  

  

Abstract— An improvement of biventricular pacing (BVP) 
could be possible by detecting the patient specific optimal 
pacemaker parameters. Body surface potential map (BSPM) is 
used to obtain the electrophysiology and pathology of an 
individual patient non-invasively. The clinical measurements of 
BSPM are used to parameterize the computer model of the 
heart to represent the individual pathology. The computer 
model of the heart is used to simulate the dyssynchrony of the 
ventricles and myocardial infarction (MI). Cardiac 
electrophysiology is simulated with ten Tusscher cell model, 
while excitation propagation is intended with adaptive cellular 
automaton at physiological and pathological conduction stages. 
The optimal electrode configurations are identified by 
minimizing the QRS duration error of healthy and pathology 
case with/without pacing between pre and post-implantation. 
Afterwards, the simulated ECGs for optimal pacing are 
compared to the post implantation clinically measured ECGs. 
The optimal electrode positions found by simulation are 
comparable to the ones meausured in hospital. The QRS 
duration reduction error between measured and simulated 12 
ECG signals are similar with a constant offset of 15 ms. The 
personalized model present in this research is an effective tool 
for therapy planning of BVP in patients with congestive heart 
failure.  

I. INTRODUCTION 
linical trials of CRT have demonstrated considerable 
improvements in quality of life and exercise capacity, 

but a significant number of non-responders have decreased 
the overall benefits [1-3]. The use of ECG criteria alone 
might result in selection of some patients who are unlikely to 
benefit and also exclusion of potential responders. 
Assessment of the regional left ventricular mechanical 
activation and viability with the echocardiography should be 
considered before implantation of the BVP device and 
further studies are required to refine the selection process. 
Once a decision has been made to proceed with the CRT 
then appropriate placement of the leads and optimal 
programming of the device will maximize the therapeutic 
effect. A recent study by Mohindra et al. [3] investigated the 
use of body surface potential mapping and computer model 
simulations to optimize the CRT device. The outcome was 
the influence of pacing locations on reducing dyssynchrony. 
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Placing the left ventricular (LV) pacing tip on the 
posterobasal section of LV and pacing both leads 
simultaneously helps to greatly reduce dyssynchrony 
without the need for optimal programming of the delay. This 
suggests that in patients with optimal lead placement, 
programming of the inter-ventricular (V-V) timing may not 
be necessary [3-5]. Ideally, a computerized optimization of 
BVP would use a model of the cardiac contraction in order 
to calculate the cardiac output. Since these models required 
an extensive calculation time and were not available at the 
time of this analysis, an alternative approach was used. If the 
temporal and spatial excitation propagation of the 
pathological heart with pacing is as close as possible to the 
physiological excitation propagation, it is assumed that the 
cardiac output will be optimal. Thus, the activation times for 
each cardiac cell (isochrones) are computed for 
physiological, pathological and therapeutic case (pathology 
with pacing). Therefore, the presented work proposes a non-
invasive optimization algorithm to find the best electrode 
positioning sites and timing delays for BVP in patients with 
left bundle branch block (LBBB) and MI. This algorithm 
can be used to plan an optimal therapy for an individual 
patient. The optimization algorithm is applied once on the 
activation time and other time on ECG intervals to 
investigate the BVP parameter optimization. 

II. METHODS 
he representation of the model generation including the 
relations between different parts is illustrated in Fig. 1.  
The purpose of the work is classified in two strategies. 

The structure of the first strategy is: 
 

• Construction of an individual patient heart model 
considering the LBBB and MI extracted from the 
segmented MR data sets according to the 
description of the excitation conduction system and 
pathologies. 

• Assessment of the optimal pacing configurations as 
well as the best electrode set-up and timing delays 
in the course of two electrophysiologically based 
optimization algorithms.  

• Comparison of the results obtained from the two 
optimization methods and reconcilement of the 
derived results. 

 
The results of the two optimization algorithms may differ. In 
this case, a trade off between optimal results could be 
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performed, ensuring a proper selection of pacing parameters. 
The structure of the second strategy is: 
 

• Creation of an individual patient torso model 
considering the inner organs such as heart, lungs, 
liver. 

• Solution of the inverse problem with patient model 
parameters set to achieve a personalized model of 
the pathology by measuring the multichannel ECG 
from a patient prior implantation. 

• Calculation of the BSPM for the patient under 
therapy based on the optimal BVP set-up.  

• Extraction of the 12 standard ECG channels. 
• Verification of the optimal pacing results with 

respect to comparison of measured ECG of the 
patient after implantation with the simulated ECG 
for optimal pacing parameters. 

 

 
Fig. 1. Complete overview of model generation, from in-vivo measured data 
to the model parameters. The arrows are indicating the link between the 
segments and demonstrate the order of the computations. The pathology is 
implemented by altering the parameters in the conduction system and 
cellular automaton. The torso model jointed to the cellular automaton can 
be used to simulate the ECG, making possible direct comparison of 
measured ECG, enabling clinical validation. 
 

The 3D volume conductor model of the thorax was 
extracted from a series of frontal axis 2D MR data sets for 
the patient. The tetrahedral mesh of the thorax was created 
including the heart and the other organs. The action potential 
(AP) of human myocytes was simulated by the ten Tusscher 
ionic cell model [6]. An adaptive cellular automaton (ACA), 
belonging to the rule-based heart models, was used in the 
present work. The ACA model does not consider explicitly 
the ionic flow interaction between the intra- and 
extracellular spaces in order to simulate the excitation 
propagation. Instead, the pre-calculated APs derived from 

the ionic current equations based on the ten Tusscher model 
are applied as a set of rules stored in a predefined library for 
the fast computation of ventricular excitation. To extract the 
optimal pacemaker set-ups including the electrode positions, 
atrio-ventricular (A-V) and inter-ventricular (V-V) delay, the 
optimization algorithms are applied on isochrones. The 
activation times of each cardiac cell were calculated for the 
physiological, pathological and therapeutic case. The 
divergence of the isochrones was calculated as a root mean 
square error (ERMS). Where, ERMS was taken as a measure for 
the difference between physiological and pathological 
excitation propagation. ERMS was minimized in order to find 
a pacing set-up delivering a temporal and spatial excitation 
propagation as close as possible to the natural physiological 
state, assumed to produce an optimal cardiac output [7, 8].
 Since the ECG of a patient with a LBBB was 
characterized by a QRS complex with the duration of more 
than 120 ms [9], the QRS duration was computed for all 
cases (1). The QRS duration was calculated as the difference 
of the activation time of the first and last activated cardiac 
cell. According to the selected optimization method, the 
optimal BVP parameters are those leading to minimal QRS 
duration difference between case 1 and 3 (2).  
 

€ 

tQRS = tact ,last − tact, first      (1) 

€ 

tact :      activation time of the corresponding voxel,  

€ 

tQRS :    QRS duration time. 

€ 

terror = tQRS.path(pace ) − tQRS.phys      (2) 

€ 

terror : time difference between physiological and 
pathological/pacing case. 
 
The steps of the optimization algorithm are the following:  

• Calculation of the QRS durations for the 
physiological and pathological case. 

• Calculation of the QRS duration for pacing case.  
• Finding the minimal difference of QRS duration 

between physiological and pacing case.  
 

In total, 36 electrode set-ups were investigated per patient. 
Eight different electrode positions were chosen in the 
anterior (A, B, C, D) and posterior (I, J, K, L) branches of 
coronary sinus. Four positions were chosen in the left 
ventricular free wall (E, F, G, H) based on several studies 
[10]. The right ventricular electrodes were placed in the right 
ventricular apex (X), upper (U) and middle (M) septal wall 
(Fig. 2). In order to speed up the calculation process for 
timing delay optimization, a Downhill simplex algorithm 
(DSA) was utilized [8]. The measured ECG signals were 
processed with the following algorithms: denoising, baseline 
wander correction, averaging in time, R-peak and QRS 
detection. For post-implantation data, the stimulus removal 
algorithm was added to the signal processing. The removal 
of the baseline wander was performed with linear filtering, 
polynomial fitting and wavelet transforms. The wavelet 
transform was applied to the ECG signals in order to 
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decompose them to the low and high scales coefficients. The 
wavelet transform of the ECG signal was computed 
according to the method proposed by Tinati et al. [11]. 

 

               
Fig. 2. The electrode positions chosen for the heart model. 
 

In each scale, the wavelet coefficients energy for both 
coarse and detail levels were calculated (branches of the 
tree). Once comparing the energies of coarse and detailed 
levels, the branch of the tree with the higher energy was 
chosen. The higher energy branches were consecutively 
followed until was reached a point where the energy 
difference exceeded a preset threshold level. At this point 
the tree was completed, and the baseline wander signal was 
identified. Using the obtained wavelet coefficients, the 
inverse wavelet transform was calculated after subtracting 
the baseline wander from the wavelet coefficients. Thus, a 
baseline wander free ECG signal was obtained. In order to 
remove the noise from the ECG signal, discrete wavelet 
transform (Daubechies) was applied to the signal. A 
threshold was selected according to Donoho’s thresholding 
method and then applied to the detailed wavelet coefficients 
[12]. Finally, the denoised ECG signal was reconstructed 
with the inverse discrete wavelet transform. The stimulus 
artifact was due to the pacemaker stimulation voltage of the 
pacemaker and had a higher slope than the ECG 
components. The slope was calculated by comparing the 
difference between two consecutive samples. After proper 
thresholding of the resulting curve, the position of the 
stimulus was located. The artifacts were removed from the 
signal by using spline interpolation to fill the gap as 
smoothly as possible. The detection of the QRS complex 
duration was performed with the wavelet transform. The 
Haar stationary wavelet transform decomposition of ECG 
signal was selected for its high sensitivity to slope changes 
in the original signal. The ECG signal was decomposed into 
the first level approximation (A1) and details coefficients 
(D1). The reconstruction of the signal with setting A1 to zero 
provides a new signal, referred to as First Level Details 
Signal (FLDS). The properties of the produced signals were 
used for detecting the R peaks, Q and S. 

III. RESULTS 
The inverse problem of electrocardiography was solved at 

least 8 times to achieve the optimal results. The best results 
including the optimal parameters based on the least ERMS 
between measured and simulated ECG were selected. The 
initial and optimized values for excitation conduction 
velocity in different tissues and the location of myocardial 
infarction are demonstrated in table 1. The initial values are 
the first estimation of the pathological parameters and were 
extracted from the previous studies [13]. The 12 standard 
ECG channels were extracted from the measured 64 
channels ECG. These signals are compared to the simulated 

ECG for 12 standard channels based on optimized 
parameters of inverse solver before implantation. The 
simulated and measured Wilson channels ECG pre-
implantation are demonstrated in Fig. 3. The signals are 
highly correlated (up to 0.8) in the interval of QRS complex. 
Furthermore, the optimal set-up parameters were discovered 
using the optimization method of CRT (pacing the leads in 
right ventricular apex (X) and the left ventricular 
posterolateral area (J) and adjusting the timing delays to 140 
ms for A-V delay and 58 ms for V-V delay). The body 
surface potential maps of the patient models based on the 
optimal BVP set-up were simulated. The QRS duration of 12 
standard ECG channels were extracted in order to estimate 
the efficacy of the optimization methods for optimal 
parameters with comparing to the corresponding QRS 
duration in measured ECGs. The difference of the QRS 
duration pre and post-implantation for Wilson leads is 
demonstrated in figure 4. The similar morphology of the 
QRS duration difference in both measured and simulated 
cases considering an offset of 15 ms verified the applied 
optimization method. 
 
TABLE I: Initial and Optimized values for infarction location and 

excitation conduction velocity in different tissues 

Data Set Initial Values Optimized 
Values 

Infarction position (x, y, z) 157 132 100 155 102 108  

Infarction size (voxels) 20 18.90 

ECV in LV myocardium  1065  1315.70 

ECV in RV myocardium 1065 1675.40 

ECV in RV Purkinje fibers  4862.02 3762.15 

ERMS 0.136043 0.123527 

ECV: excitation conduction velocity (mm/s), LV: left ventricular, RV: right 
ventricular, Number of iterations: 272. 

IV. DISCUSSION AND CONCLUSION 
The clinical practices of University Hospital Mannheim and 
the simulation results of the BVP optimization are in good 
agreement. Both methods identified the same left electrode 
position as being optimal for the therapy. On the other hand, 
the surgeons would prefer to place the right electrode in the 
septal position, reasoning that a larger distance between 
electrodes results in a better coverage of the ventricular area. 
However, reaching the septal position is an onerous process 
and to avoid the risk of injuries, usually the right ventricular 
apex is selected, region, which the simulations proved to be 
beneficial for the patient. The regions selected as optimal 
with the computer model, proved to be physically reachable 
in practice. Simultaneous to the most optimal electrode 
positions, the computer model also indicates the BVP 
efficiency specific to all the other electrode positions. 
Therefore, in case the most optimal configuration cannot be 
applied in practice because of physical restrictions, the 
surgeon may choose the second or third optimal electrode 
configuration, as achieved by the simulations. The timing 
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delay used in hospital was 100 – 130 ms for A-V delay and 0 
ms for V-V delay, while the values obtained in this work are 
slightly larger. Another relevant advantage of the BVP 
computer model optimization is that it can be adapted to any 
individual anatomy and pathology. Additionally, due to the 
pre-operative advantage, the computer-based method, in 
comparison to the clinical optimization, leads to a less 
invasive procedure for the patient and is time efficient, both 
aspects being beneficial for the patient. 

 
(a) 

 
(b) 

Fig 3: ECG in Wilson leads: (a) Simulated after solving the alternative 
approach of inverse problem. (b) Measured. (The P-wave in the simulated 
one does not exist since the atria model was not created due to the lack of 
information in the MR-data set. The T-wave was not included into the 
optimization process.) 
 

 
 
Fig. 4: The QRS duration difference of the Wilson ECG channels before 
and after implantation. 
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