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Abstract— There is evidence that wall shear stress (WSS)
is associated with vascular disease. In particular, it is widely
accepted that vascular segments with low or oscillatory values
of WSS are more probable to develop vascular disease. It is
then necessary to establish a realistic model of the blood flow
in blood vessels in order to determine precisely WSS.

We proposed a numerical 1D model which takes into account
the pulsatile nature of blood flow, the elasticity of the vessel, and
its geometry. The model allows the calculation of shear stress.
It was validated for stationary situations. Then, we computed
the time–dependent WSS distribution from experimental data
in the sheep thoracic aorta.

Results showed that mean WSS calculated through steady
flow and rigid walls models is overestimated. Peak WSS values
for pulsatile flow must be considered since they resulted to be at
least one order higher than mean values. Oscillations in shear
stress in a period showed to be approximately of 40%.

These findings show that the proposed model is suitable for
estimating time–dependent WSS distributions, and confirm the
need of using this kind of model when trying to evaluate realistic
WSS in blood vessels.

I. INTRODUCTION

Wall shear stress (WSS) expresses the force per unit area

exerted by a fluid in motion on a solid boundary in a

direction on the local tangent plane. Currently, issues related

to WSS distribution in arterial flow are receiving attention

because of emerging evidence that it is associated with

vascular disease [1][2][3]. Several studies have led to the

notion that local hemodynamic factors, such as WSS, may

play a role in the initiation and, perhaps, progression of the

disease [1][2][3][4]. It is now widely accepted that the vessel

segments that appear to be at the highest risk for development

of diseases (such as atherosclerosis) are those with low or

oscillatory WSS values [2][3]. It is then necessary to develop

models that allow obtaining realistic WSS patterns in blood

vessels [5].

Determination of WSS in the arterial flow is not trivial due

to the complexity of the system under consideration. Firstly,

the problem is described exactly by the three Navier–Stokes

equations of motion for the fluid, the equation of continuity

for the fluid, and equations of motion for the vessel wall. A

general solution for such a system has not been achieved.

Additionally, not all of the physiological quantities involved

are easy to obtain in the practice.

Here we show how to achieve realistic time-dependent

WSS values and distributions by means a 1D model for

the blood flow which takes into account realistic features
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of the problem such as the vessel geometry (tapering),

the flow nature (pulsatility) and the vessel wall properties

(compliance). Additionally, we present results obtained with

real data from an animal model.

II. MATERIALS AND METHODS

A. Model

We consider flow in a compliant tube with axial symmetry,

which is the artery. This flow may be stated as quasi-one-

dimensional. This means that the radial velocity vr is much

smaller than axial velocity vz. In the case of flexible tubes

(such as mammalian arteries) this is acceptable, since the

maximum value of vr is the radial velocity of the wall, which

will be small unless the tube is very flexible [6]. We assume

blood as a Newtonian fluid.

By neglecting the terms corresponding to vr in the Navier–

Stokes equations, averaging in the cross sectional area and

considering the continuity equation for this case, one obtains

the following system of equations [6]:
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where A(z, t) is the cross-sectional area of the artery, R(z, t)
the arterial radius, U(z, t) a mean velocity in the z direction,

p(z, t) the pressure, ρ the blood density, µ the blood viscos-

ity, and α a parameter that accounts for the fact that averaged

quantities are conserved. The value of α is a constant for a

given velocity profile [6][7]. It should be noted that in the

right side of (1), µ
[

∂vz

∂ r

]

R
corresponds to the force exerted

by the wall on the blood, that is, WSS with the opposite sign.

In the case that one is provided with the data of A and
∂ p
∂ z

for all values of z of the tube and for every instant t, and a

boundary condition for U (i.e. U in one of the extremes of the

tube for every instant), the system (1)–(2) can be numerically

solved to obtain U and WSS for all values of z and t.

B. Surgical instrumentation

The experiment was done in an adult Corrediale-Romey

Marsh sheep of approximately 62 kg and 3 years of age, in

total agree with the established norms in the Institutional

Animal Care and Use Committee (Universidad Favaloro,

NIH-PHS Nro. A5556-1) and the Guide for the Care and Use

of Laboratory Animals published by U.S. National Research

Council (National Academy Press, Washington, D.C. 1996).

2847

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



Under pre–medication with acepromazine maleate (0.2

mg/kg IM) general anaesthesia was induced with sodium

thiopental (20 mg/kg IV), and maintained with halothane

(1.5–2% in pure oxygen at 2.5 L/min) under assisted me-

chanic ventilation (Neumovent 910, TECME SA, Crdoba,

Argentina). The ventilation was controlled during all the

experiment using positive pressure at a frequency of 12

cycles per minute and a tidal volume of 15 mL/kg, adjusting

for maintaining a CO2 of 25–30 mmHg (Siemens–Elema

capnograph E336E, Sweden). The heart rate and the blood

oxygen saturation were continually monitored with a pulse

oxymeter (Novametrix, model 5154, Medical System Inc,

Wallingford, Connecticut).

After a thoracotomy was done in the forth left intercostal

space, two pairs of ultrasonic transducers (2 mm, 5 MHz)

were implanted for measuring the external aortic diameter,

one in the middle third of the descendent thoracic aorta and

the other eight centimetres distal form this. In this way,

the tapering of the aorta is taken into account. Through

canalization of the femoral artery, a 6 French pressure

microtransducer (Gaeltec Ltd, UK) was introduced, which

after verifying by palpation that its endovascular position

corresponded with the first diameter transducers, was fixed

in the exterior. The instrumentation also included an elec-

tromagnetic flow transducer (probe 20 A) implanted a few

millimetres proximal to the first pair of diameter transducers,

connected to a flow–meter (model T206, Transonic Systems

Inc, Ithaka, New York, USA).

C. Data acquisition and preparation

The aortic pressure, diameters and flow signals were

sampled at 200 Hz in a computer (PC Pentium II) equipped

with a multichannel analogical–digital converter of 12–bits

(LabPC 1200, National Instruments, Austin, Texas, USA)

using a specific software developed in the Department of

Electronics of the Universidad Favaloro. From all the signals,

the data of a stable period was selected.

Assuming that the aorta tapering is linear, and since we

are provided with A(t) at the inlet and the outlet of the tube,

the data of A in the selected period and for all values of z

was obtained. Then, assuming the pressure gradient as linear,

that mean pressure in the segment length drops 0.2 mmHg

approximately [8][9], and that elasticity obtained form the

p–A relationship in the proximal extreme of the artery is the

same for all the modelled segment, the pressure gradient for

all values of z in the period was obtained.

Mean velocity U in the inlet of the tube (z = 0) was

obtained by dividing the flow signal in the selected period

by the probe cross-sectional area.

D. Numerical resolution

The system of equations was solved numerically with the

Runge–Kutta method and was programmed in MATLAB.

The discretization consisted in 148 points for z axis and 148

points for t (∆t = 5× 10−3 s and ∆z = 5.4× 10−4 m). The

length of the tube was L = 8 cm (the real distance between

diameter transducers), and elasticity value was E = 2.65×

106 Pa/m, obtained from the p–D relationships (consistent

with previous validated values [10]).

As a final result, U(z, t) and WSS(z, t) were obtained.

III. RESULTS

First, the model was tested with well known situations,

comparing its results with those of their analytical solution.

For the case of a tube with no tapering, steady flow and

lineal pressure gradient (Poiseuille’s flow) the results where

the same in both analytical and numerical solutions. Then,

we allowed the tube to be slightly tapered, and obtained the

analytical and numerical solutions with steady flow (all input

quantities were the average values for the selected period

from experimental data. In Fig. 1 we show this comparison. It

Fig. 1. WSS as a function of z for the case of steady flow and tapered
tube. Dots correspond to numerical solution and solid line to the analytical
one.

can be seen that the numerical model estimates considerably

the analytical solution, with a maximum error of 0.17%.

In Fig. 2 the signals of pressure (grey line) and mean

velocity at the inlet of the segment (black line) for the

selected period obtained experimentally are shown.

Fig. 2. Pressure (grey line) and mean velocity (black line) at the inlet of
the segment.
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In Fig. 3, WSS as a function of time and axial position

with α = 4/3 (parabolic profile) is shown.

Fig. 3. WSS at the inlet of the tube.

Mean values of WSS are similar to those found in bibli-

ography [5]. However, it is remarkable that peak values of

WSS, which are ignored in steady flow models, are at least

one order higher that the WSS mean values.

We compared the distribution of mean WSS with that ob-

tained for the steady flow and rigid wall case (inputs were the

mean values of the signals) for the same tapering condition.

Differences are considerable Fig. 4. This suggests that, using

steady flow and rigid walls, mean WSS is overestimated.

Fig. 4. Comparison of the distribution of mean WSS with that obtained
for the steady flow and rigid wall case.

Another measure of WSS that represents the wave form

and, in particular, the proportion of positive and negative

shear is the oscillatory shear index (OSI) [11] [12] defined

as:

OSI =

∫ T

0

∣

∣τ−
∣

∣dt

∫ T

0
|τ|dt

(3)

where T is the cycle period, τ is the instantaneous shear

stress and τ− is the portion of the shear stress acting in the

direction opposite the mean shear stress. As an example,

OSI value for WSS at the inlet of the tube (Fig. 3) was

0.3920, which indicates that oscillations in shear stress

are considerable and should be taken into account as an

important feature.

Finally, since the calculations depend on the parameter α ,

which is a constant for a given velocity profile, we proposed

to compare results for a certain range of α . In Fig. 5, mean

WSS and peak WSS at the inlet of the tube as a function of

α are shown. It is important to note that for two of the most

commonly used profiles, such as the parabolic profile (α =
4/3) [6][13] and the constant one (α = 1) [6], differences

are negligible. More generally, in a bigger range of α , mean

WSS appears not to be affected, whereas for large values of

α , peak WSS is modified considerably.

Fig. 5. Mean WSS (circles) and peak WSS (squares) as a function of the
parameter α .

IV. DISCUSSIONS

It is accepted nowadays that the vessels segments that are

more probable to develop a vascular disease are those with

low or oscillatory values of WSS [2][3]. Actual studies con-

sider stationary flow, rigid walls or very trivial geometries. It

is then necessary to achieve a realistic model for the blood

flow in arteries that may lead to the assessment of these

important characteristics of WSS.

The proposed model resulted suitable for estimating WSS

in simple cases such as Poiseulle’s flow and stationary flow in

a tapered vessel. In the case of pulsatile flow and compliant

walls, time dependent WSS distribution was obtained in a

sheep thoracic aorta with experimental data. Mean values

were congruent with those found in bibliography; although

it was shown that the steady solution with rigid walls for

the same tapering overestimates mean WSS. An important

characteristic to remark is that pulsatility and compliant walls

introduce features such as peak values and oscillations that

are not negligible and should be taken into account when

evaluating WSS in a given artery. Peak values of WSS were

in all cases at least one order higher than mean values. OSI

was approximately 0.4 in all cases, which means that about

40% of the WSS in a period is negative. These two findings

confirm that peak WSS and oscillations are considerable and

suggest the need of using this kind of models to calculate

realistic WSS in a vessel segment.
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Since the physiological measurements needed for this

model are the same that are used when calculating WSS

classically (assuming stationary flow and rigid walls), no

additional instrumentations in experimental investigations are

required.

This model has the requirement that one should know a

priori the velocity profile developed in the vessel for each

particular situation. However, for the case of large arteries,

the most common profiles assumed are the parabolic and the

constant ones. For these, differences in WSS obtained with

the model are negligible. More over, in a bigger spectrum of

situations, peak WSS is affected considerably by the velocity

profile.

As an important limitation, this model is only suitable for

straight vessels with axial symmetry such as the aorta. More

complicated geometries can not be studied, and another kind

of focus such as finite element analysis or fluid–structure

interaction must be performed.

V. CONCLUSION

We proposed a 1D model for blood flow in arteries that

takes into account realistic features such as the flow pulsatil-

ity and the arterial wall compliance in order to obtain wall

shear stress in the artery. The model was solved numerically

and was validated with stationary cases. We obtained the

time-dependent WSS distribution in a sheep thoracic aorta

segment with experimental data. Results showed that peak

values of wall shear stress and oscillations are considerable

and should be studied with this kind of models when trying

to evaluate shear stress in a vessel segment and trying to

correlate it with normal and abnormal behavior of the vessel,

such as a dysfunction or a disease.

The importance of this model is that it is suitable for

practice since it is simple, it complains realistic features

of blood flow, and can be used with common clinical

measurements.

ACKNOWLEDGMENTS

Authors acknowledge grants PICTO 31355 and PICTO

21360 from Agencia Nacional de Promocin Cientfica y Tec-

nolgica in cooperation agreement with Favaloro University.

REFERENCES

[1] P. F. Davies, “Hemodynamic shear stress and the endothelium in
cardiovascular pathophysiology,” Nat Clin Pract Cardiovasc Med,
vol. 6, pp. 16–26, 2009.

[2] C. G. Caro, “Discovery of the Role of Wall Shear in Atherosclerosis,”
Arterioscler Thromb Vasc Biol, vol. 29, no. 2, pp. 158–161, 2009.

[3] D. Katritsis, L. Kaiktsis, A. Chaniotis, J. Pantos, E. Efstathopoulos,
and V. Marmarelis, “Wall shear stress: theoretical considerations and
methods of measurement,” Prog Cardiovasc Dis, vol. 49, no. 5, pp.
307–329, 2007.

[4] D. P. Giddens, C. K. Zarins, and S. Glagov, “Flow and atherogenesis
in the human carotid bifurcation,” in Fluid Dynamics as a Localizing

Factor for Atherosclerosis, G. Schettler, Ed. Springer–Verlag, 1983.

[5] J. Humphrey, “Mechanisms of Arterial Remodeling in Hypertension:
Coupled Roles of Wall Shear and Intramural Stress,” Hypertension,
vol. 52, no. 2, p. 195, 2008.

[6] A. Barnard, W. Hunt, W. Timlake, and E. Varley, “A theory of fluid
flow in compliant tubes,” Biophysical Journal, vol. 6, no. 6, pp. 717–
724, 1966.

[7] S. Čanić, “Blood flow through compliant vessels after endovascular re-
pair: wall deformations induced by the discontinuous wall properties,”
Comp and Visual in Science, vol. 4, no. 3, pp. 147–155, 2002.

[8] M. Olufsen, C. Peskin, W. Kim, E. Pedersen, A. Nadim, and J. Larsen,
“Numerical simulation and experimental validation of blood flow in
arteries with structured-tree outflow conditions,” Annals of Biomed

Eng, vol. 28, no. 11, pp. 1281–1299, 2000.
[9] W. W. Nichols and M. F. O’Rourke, McDonald’s blood flow in

arteries. London: Edward Arnold, 1995.
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