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Abstract— This paper presents a fractal mechanical model
for branching systems, with application to the respiratory
system. Assuming a dichotomously branching tree, each airway
tube is modeled by a Kelvin-Voigt model (a spring in parallel
with a dashpot) using morphological values. The model allows
investigations on the viscoelastic properties within the context
of inter-connections between levels of the respiratory tree.
The results are in agreement with physiological expectancy.
The model presented in this paper can also serve to derive
a mechanical model for other branching systems, i.e. the
circulatory system.

I. INTRODUCTION

FRACTIONAL order systems are dynamical systems
whose model can be represented in a natural way

by non-integer order parameters. They acknowledge some
specific phenomena; fractal structure, diffusion and/or vis-
coelasticity. The respiratory system poses all tree enumerated
properties; the airway distribution has a fractal structure, in
the alveoli gas exchange by means of diffusion takes place
and the lung parenchyma is viscoelastic. The clinicians prefer
a simple, yet accurate model from whose parameter values
they are able to detect whether a patient has a lung pathology
or not. It is therefore interesting to characterize the lung
function in terms of its mechanical properties as stress, strain
and viscoelasticity, which can be directly related to changes
in airway duct geometry.
Viscoelasticity of lung parenchyma determines the mechani-
cal properties of the overall lung function. Lung parenchyma
consists of tissue fibers interwoven in a network of collagen
and elastin strings [2], [7]. Since the system acts as a whole,
it is important to characterize the mechanical properties as
they propagate within consequent levels. Several research
groups investigate the viscoelasticity of the lung parenchyma
in animal and human studies (ex-vivo) [7], [10]. Their inves-
tigations are based on excised lung tissue strips, neglecting
the inter-connection to the rest of the system.
This study is a sequel from modeling the respiratory tree with
an electrical equivalent [5]. By electro-mechanical analogy,
a simple mechanical model can be derived. The mechanical
model allows predictions upon the stress-strain relationship
calculated at the entrance of a level in the respiratory tree.
The paper is organized as follows. The respiratory tree and its
modeling by the electrical equivalent is briefly explained in
the next section, along with the mechanical model derivation
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for obtaining the stress-strain relation. Simulation results and
their interpretation are detailed in the third section, while
a conclusion section summarizes the main outcome of this
investigation.

II. MODELS FOR THE RESPIRATORY TREE

THE respiratory tree is an asymmetric branching struc-
ture of airway ducts, in which a certain degree of

symmetry can be recognized [11], [12]. For simplicity, in this
paper we treat the symmetric case of morphological values
for the airways, which assumes a dichotomously equivalent
bifurcation of the airways in sub-sequent levels [8], [9], [11],
[12]. Gas enters and leaves the lung through a bifurcating
system of tubes that get successively smaller in diameter
(fractal structure). The respiratory system consists of two
zones: the conductive zone, from level 1 to 15, and the
respiratory zone, from level 16 to 24, with level 1 denoting
the trachea and 24 the alveoli [4]. For the purpose of this
study, we investigate the airways within the respiratory zone,
in which the air is involved in the process of gas exchange.
The airway tube parameters are presented in Table I.

TABLE I
THE AIRWAY TUBE PARAMETERS [9], [12].

Level Length Radius Wall thickness Cartilage
m ` (cm) r (cm) h (cm) fraction κ
16 0.810 0.125 0.0086 0.0329
17 0.770 0.120 0.0083 0.0308
18 0.640 0.109 0.0077 0.0262
19 0.630 0.100 0.0072 0.0224
20 0.517 0.090 0.0066 0.0000
21 0.480 0.080 0.0060 0.0000
22 0.420 0.070 0.0055 0.0000
23 0.360 0.055 0.0047 0.0000
24 0.310 0.048 0.0043 0.0000

A. Electrical Equivalent

By analogy to electrical networks, one can consider voltage
as equivalent for respiratory pressure P and current as
equivalent for air-flow Q. Electrical resistances R repre-
sent respiratory resistance that occur as a result of airflow
dissipation in the airways, electrical capacitors C represent
volume compliance of the airways which allows them to
inflate/deflate.
From the geometrical and mechanical characteristics of the
airway tube, and from the air properties, one can express the
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parameters for one airway tube [5]:

R = `
µδ2

πr4Ḿ10

sin(έ10) (1)

C = `
2πr3(1− ν2

P )
Eh

(2)

with ` the length, r the radius, h the thickness, νP = 0.45
the Poisson coefficient, µ = 1.86 · 10−5 kg/m-s the viscosity
of air and δ = r

√
ωρ
µ the Womersley parameter [13], where

ρ = 1.075 kg/m3 is the density of air, ω = 2πf and f is the
frequency in Hz. Ḿ10 and έ10 are respectively the modulus
and phase angle of Bessel functions of the first kind and
order 0 and 1 [1], denoted by:

Ḿ10e
jέ10 = 1− 2J1(δj3/2)

J0(δj3/2)δj3/2
(3)

in which j =
√
−1 is the complex number. The effective

elastic modulus E is considered in function of the airway
tissue structure. We take into account the fraction amount
κ of corresponding cartilage tissue (index c) and soft tissue
(index s) for each level (see Table I), with Ec = 400 kPa
and Es = 60 kPa [5].

E = κEc + (1− κ)Es (4)

The balance between the cartilage and soft tissue percent
varies with each respiratory level and with disease. It is
therefore important to include this information in our model.
Using equations (1-2) and with e the voltage and i the current
represented as in Fig. 2, the equations for the electrical model
are given by:

e0 = R1i1 + e1; e1 =
R2

2
i2 + e2 (5)

i1 = i2 + C1ė1; i2 = 2C2ė2 (6)

Fig. 1. A schematic representation of the electrical model for the lung
parenchymal tissue (starting from level 16).

B. Mechanical Equivalent

Using the electro-mechanical analogy from Table II, we
can derive an equivalent mechanical model. This can be
done starting from the electrical model equations (5-6).
The electrical element (resistance in series with capacitor)

TABLE II
THE ELECTRO-MECHANICAL ANALOGY.

Electrical Mechanical
Voltage e [V ] Force f [N ]
Current i [A] Velocity v [m/s]
Resistance R [kPa− s/l] Damping constant B [Ns/m]
Capacitance C [l/kPa] Spring constant 1/K [m/N ]
Inductance L [kPa− s2/l] Mass M [Ns2/m]

Fig. 2. An illustrating example of the first two levels in the electrical and
the mechanical networks.

corresponds to the mechanical Kelvin-Voigt element (dashpot
in parallel with spring):

f0 = B1v1 + f1; f1 =
B2

2
v2 + f2 (7)

v1 = v2 +
1
K1

ḟ1; v2 =
2
K2

ḟ2 (8)

The values of resistors and capacitors are calculated with the
model from Fig. 2 and relations (1-2): R1 = 0.2 kPa− s/l
and C1 = 0.25 l/kPa. The total parameter values for each
level m are then given by R∗

m = Rm/2m−1 and C∗
m =

2m−1Cm. From these values one can calculate the equivalent
B∗
m and K∗

m:

B∗
m =

fm
vm

=
Pm
Qm

APmAQm = R∗
m4π2r4

m(1− ν2
P ) (9)

K∗
m =

fm
xm

=
Pm
Vm

APmAQm =
1
C∗
m

4π2r4
m(1− ν2

P ) (10)

with P the pressure in Pa, Q the flow in m3/s, V the volume
in m3, APm and AQm areas, r the radius of a tube, x the
axial displacement and νP = 0.45 the Poisson coefficient.
Fig. 3 depicts the evolution of the parameters in the entire
level m. The evolution in a single tube in consecutive levels
is quasi-linear for both parameters. However, since the total
parameter values (indicated by the superscript ∗) depend on
the total number of tubes within each level, they change as
an exponential decaying function. When represented on a
logarithmic scale, one can observe a quasi-linear behavior.
In a similar manner as the electrical impedance is calculated,
one may obtain H(s), which defines the relation from ve-
locity (input) to force (output) f(s)/v(s), with s the Laplace
operator. For one damper and one spring in parallel, we have
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Fig. 3. Parameter evolution in the entire level, for levels 16–24.

that H(s) = B +K/s.
Due to the fact that the network is dichotomous and sym-
metric, we can obtain the mechanical impedances Htot m(s)
using recurrent forms as in Fig. 2 and starting at level 24 with
an impedance denoting the gas compression compartment. In
Fig. 4 the Bode diagram of these transfer functions for the
lung parenchyma are plotted; the fractional integrator with
order 0.15 can be seen at [10−2, 102] rad/s.

Fig. 4. The Bode diagram of the mechanical impedances.

The lung parenchyma consists of interwoven collagen (in-
finitely stiff) and elastin (elastic) fibers [7]. Each level in
the respiratory tree has a specific balance between these
two components. In our model we approximate this bal-
ance in function of the cartilage percent (4). Following
this reasoning, a similar representation of the mechanical
model is given in Fig. 5. Here, the cylinders represent the
airway branches which are interconnected with inextensible
unstressed strings. Once a string is taut, any further increases

Fig. 5. A schematic representation of the mechanical model for the lung
parenchymal tissue (levels 16–24).

in strain will cause its associated airway branch to become
strained. Only those levels with taut strings bear stress.
As the tissue is stressed progressively more of the strings
become taut and the stiffness of the entire model increases
accordingly. The lung elasticity is determined by elastin
fibers, while collagen, which is virtually inextensible, limits
the maximum lung dimensions.
This representation varies from that of Bates in that it
represents the total collagen-elastin distribution in a level
and not in a single tissue strip [2].

C. Stress-strain derivation

The elastic modulus is defined as the ratio between stress
and strain properties. The Kelvin-Voigt body is the simplest
viscoelastic model that can store and dissipate energy, con-
sisting of a perfectly elastic element (i.e. spring) arranged
in parallel with a purely viscous element (i.e. dashpot). The
corresponding differential equation is given by:

σ(t) =
K`

Across
ε(t) +

B`

Across

dε(t)
dt

(11)

with σ the stress, ε the strain, ` the length, Across = 2πrh
the cross section of the tube, with r the radius and h the
thickness. K and B are the constants of respectively the
spring and dashpot [3]. The stress can be defined as pressure,
whereas the latter is given by force distribution over the area.
The strain ε is defined as the ratio of the change in length
over the initial length: ∆`/`. Starting with an unstressed
tissue, we apply a strain that increases in steps of 10% until
it reaches 100%. The new length can be calculated as:

`new = (1 + ε)`old (12)

with the subscript old denoting the unstressed properties.
Assuming a constant tissue volume Vt, the radius will
decrease:

rnew =
Vt

2π`newh
=
rold`old
`new

(13)
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We neglect the changes in the thickness h of the tube wall
with changes in the strain. Applying an oscillatory flow Q
of constant amplitude 0.5 l/s and a frequency of 0.25 Hz,
the velocity v can be calculated as:

vnew =
5 · 10−4

AQnew
(14)

Since the B’s and K’s are time-invariant material properties,
the transfer function H will be independent of the strain. This
mechanical impedance H is defined as force over velocity.
The new pressure is then given by:

Pnew =
fnew
APnew

=
H · vnewH
APnew

=
H · 5 · 10−4

APnewAQnew
(15)

with the multiplication of the areas APnewAQnew =
4π2r4

new

(
1− ν2

P

)
. The elongation of the tube can be ex-

pressed as [6]:

P +
h

r
(
1− ν2

p

) ( K`

Across
ε+

B`

Across

dε

dt

)
= 0 (16)

The stress σ are then given by:

σnew = −Pnew
rnew

(
1− ν2

p

)
h

(17)

Now the stress and strain properties can be evaluated using
equations (12-17).

III. RESULTS AND DISCUSSION

USING the formulas from section II-C, one obtains the
stress-strain curves depicted in Fig. 6. The strain is

increased in steps of 10% from 10 to 100%. Starting from
level 24, one can then calculate the stress-strain curve at
the input of each level. This then will give rheological
information in the context of all levels interconnected.

Fig. 6. The stress-strain curves.

As expected, the stress increases with the degree of elonga-
tion applied to the entire structure. The more levels we have
in our structure, the higher the values of the stress-strain
curve, due to higher amount of cartilage tissue (collagen).
This is also illustrated in Fig. 5. The obtained results are
qualitatively similar to those reported in literature [7], [10].

Quantitatively, it is not possible to make an evaluation of
our model, since the values reported hitherto in the literature
are based on excised tissue strips. One may expect that the
mechanical conditions vary for an excised tissue and for a
biological tissue analyzed in relation to the rest of the organ
from which it belongs.

IV. CONCLUSIONS

AMECHANICAL equivalent is derived in this paper,
based on an electrical symmetrical model of the respira-

tory tree. The novel contributions are twofold: i) the elements
are calculated with morphological values and preserve the
geometry of the lungs, and ii) the stress-strain properties are
evaluated at every level, but they are inter-related with the
consequent levels within the network.
In a first instance, the model presented in this paper can
serve to observe the evolution of the stress-strain relationship
to changes in morphology. A second step is to verify how
these results change for the case of an asymmetric tree.
The model can also serve to derive mechano-electrical mod-
els for other similarly branching systems, i.e. the circulatory
system.
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