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Abstract—The forced oscillation technique offers some 

advantages over spirometry for assessing pulmonary function. It 
requires only passive patient cooperation; it also provides data in a 
form, frequency-dependent impedance, which is very amenable to 
engineering analysis. In particular, the data can be used to obtain 
parameter estimates for electric circuit-based models of the 
respiratory system, which can in turn aid the detection and 
diagnosis of various diseases/pathologies. In this study, we compare 
the least-squares error performance of the RIC, extended RIC, 
augmented RIC, augmented RIC+Ip, DuBois, Nagels and Mead 
models in fitting 3 sets of impedance data. These data were 
obtained by pseudorandom noise forced oscillation of healthy 
subjects, mild asthmatics and more severe asthmatics. We found 
that the aRIC+Ip and DuBois models yielded the lowest fitting 
errors (for the healthy subjects group and the 2 asthmatic patient 
groups, respectively) without also producing unphysiologically 
large component estimates.  
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I.  INTRODUCTION 

 

At present, respiratory function is most commonly 
assessed by spirometric tests, while increasingly the method 
of forced oscillation is being utilized. The main concerns 
with spirometry are: a) it requires considerable cooperation 
and coordinated maximal respiratory muscle efforts from 
patients that make it difficult and uncomfortable for patients 
and time-consuming to perform, and b) may not be 
particularly sensitive to mechanical dysfunction in smaller 
airways, where much of the pathological changes occur in 
asthma and COPD. In contrast, pulmonary function testing 
by the forced oscillation technique (FOT) [1] requires only 
passive patient cooperation during normal breathing to 
measure the air pressure and rate of air flow at the entrance 
to the respiratory system, which defines that system’s 
mechanical impedance.  

The two main implementations of FOT are known as 
impulse oscillometry (IOS) and pseudorandom noise (PRN) 
forced oscillation (FO) [2]. Differences between them are in 
the nature of the pressure oscillations delivered at the mouth. 
However, both methods derive an impedance spectrum 
(frequency response) using the Fast Fourier Transform (FFT) 
and both methods are limited in defining that spectrum 
below 5 Hz because of interference from the harmonics of 
normal respiratory airflow.  

In PRN FO, the pressure oscillations are a mixture of 
sinusoidal waves of varying frequency and amplitude, most 
commonly lasting 16 seconds in duration. Relatively greater 

power is delivered to the oscillations at lower frequencies 
(less than 8 Hz) to enhance the signal-to-noise ratio (SNR) of 
the resulting impedance spectrum at lower frequencies. In 
contrast, IOS delivers a 70-80 ms nearly triangular pulse of 
pressure every 200 ms (5 times/s). The method of Fourier 
analysis differs between the two techniques: because IOS is 
inherently a discontinuous input signal, it is analyzed by a 
Fourier integral, yielding a continuous output in the 
frequency domain. In contrast, PRN FO delivers a 
continuous waveform which is analyzed by a Fourier series, 
resulting in a frequency resolution of 1/(pressure waveform 
duration). When 16 s blocks of PRN FO data are analyzed, 
the frequency resolution is more than adequate (1/16 Hz). 
However, the time resolution limits the discrimination 
between inspiratory and expiratory phases of respiration, 
since 16 s will include 3 or more complete breaths. IOS 
provides continuous frequency resolution, allowing analysis 
of impedance at frequencies below the fundamental 5 Hz 
pressure oscillations; and increasingly, data at 3 Hz are being 
analyzed. In addition, each pulse is input into the FFT 
individually, such that the time resolution is 200 ms and 
respiratory phase-differences are easily detected. 

Since FOT measurements involve frequencies and 
impedances, it is possible to correlate the measurements to 
respiratory system models consisting of analogous electrical 
components. In particular, parameter estimates for such lung 
models can serve as reference values for the detection and 
diagnosis of various respiratory diseases. This paper 
describes work to try and identify the most appropriate linear 
electric circuit-based respiratory system model(s) to use for 
such a purpose given PRN FO data.  

 
II.  DESCRIPTION OF THE MODELS 

 

Of the seven linear electric circuit-based respiratory 
system models considered in this study, considerable work 
has previously been done on the RIC model and the DuBois 
model [1, 3, 4], as well as the Mead model [5, 6, 7]; the 
Nagels’ [8, 9] model is a slight simplification of the Mead 
model. Three of these models (extended RIC, augmented 
RIC and augmented RIC +Ip) have been recently proposed 
by our research group [10, 11, 12]. They have been studied 
fairly extensively over the past few years with respect to IOS 
data but not for PRN FO data.  And a comparison of the IOS 
with PRN FOT found that these measurement methods yield 
similar but not identical respiratory system impedance values 
[13]. 
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A.  RIC model   
 The resistance of the airways R, lung inertance I, and the 
compliance of the alveoli C, are modeled as a simple three-
element circuit (see Fig. 1), with R typically in cmH2O/l/s or 
kPa/l/s, I in cmH2O/l/s2 or kPa/l/s2, and C in l/cmH2O or 
l/kPa). 

 
Fig. 1.  RIC model 

 
B.  Extended RIC model [10] 

This model was proposed as an improvement to the RIC 
model. Specifically, the additional peripheral resistance 
associated with the compliance (see Fig. 2) allows for the 
frequency dependence observed of typical real impedance 
data, which is beyond the RIC model’s capability.  

 
Fig. 2.  Extended RIC model 

 
C.  Augmented RIC model [11] 

This model is an improvement of the extended RIC 
model. The additional element Ce (see Fig. 3) models extra-
thoracic (upper airway) compliance, which is thought to 
increase the real part of the respiratory system’s impedance at 
the higher frequencies due to upper airways shunt effects, as 
observed in a significant proportion of the IOS data under 
analysis. Such an upturn at the higher frequencies cannot 
occur with the extended RIC model [10].  

 
Fig. 3. Augmented RIC model 

 
D.  Augmented RIC+Ip model [12] 

The aRIC+Ip model subsumes the RIC, eRIC and aRIC 
models. Its six components represent central and peripheral 
resistances (R, Rp), large airway inertance (I), small airway 
and extrathoracic compliances (Cp, Ce), as for the aRIC 
model, as well as an additional small airway inertance (Ip): 
see Fig. 4.  

 
Fig. 4.  Augmented RIC+Ip model 

E.  Mead’s model [5, 6, 7] 
Mead’s model simulates different mechanics in the lung 

and chest wall. Its seven parameters are central and 
peripheral resistances (Rc and Rp), inertance (I), and lung, 
chest wall, bronchial tube, and extrathoraic compliances (Cl, 
Cw, Cb, Ce) as shown in Fig. 5.  

 
Fig. 5.  Mead’s model 

 
F.  Nagels’ model [8, 9] 

The Nagels’ model shown in Fig. 6 is essentially the 
Mead model without the extrathoraic compliance 
component. Since an input impedance measurement is 
unable to distinguish the separate contributions of resistances 
Rc and Rw that are in series, one can lump them into a single 
resistance R. 

 
Fig. 6.  Nagels’ model 

 
G. DuBois’ model [1, 3, 4] 

This model was proposed by DuBois et al [1]. It divides 
the airway, tissue, and alveolar properties into different 
compartments. The parameters are airway and tissue 
resistance (Raw, Rt), airway and tissue inertance (Iaw, It), and 
tissue and alveolar compliance (Ct, Cg).  

 

 
Fig. 7.  DuBois’ model 

 
Clearly, these 7 models are related to each other in 

structure, which has considerable implications in terms of 
their modeling error performance relative to each other. Fig. 
8 shows their places in this family tree.  
 

III. DATA AND METHODS 
 

The FOT data used to derive the various models’ 
parameters were obtained from data described in [9]. Briefly, 
the data were obtained from 15 healthy subjects (group 1), 
and 30 patients with bronchial hyperreactivity – 15 of whom 
did not use inhaled corticosteroids (group 2) while the 
remaining 15 did (group 3, more severe asthma than group 
2). The FOT-acquired resistive impedance (Rrs or ZR), and 
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reactive impedance (Xrs or ZX) data included oscillatory 
frequencies between 4  and 52 Hz, reported at 4 Hz intervals 
at FRC, FRC – 1 L and FRC + 1 L lung volumes. For our 
study, we elected to use the mean Rrs and Xrs values for each 
group from 4 to 24 Hz only (at the FRC level and at 4 Hz 
intervals) in performing the model estimations, consistent 
with the range and number of frequencies used in our 
previous modeling studies with IOS data [10, 11, 12].  

 

 
RIC 

eRIC 

aRIC 

aRIC+Ip Nagels 

Mead 

DuBois 

 
 

Fig. 8.  Family tree of models. 
 
Parameter estimation is similar in concept to curve-

fitting. Therefore, it is necessary to first select a suitable 
error criterion E that is to be minimized, where 
 )}(),...,(),({ 21 xxx mfffgE =  (1) 

in which )(),...,(),( 21 xxx mfff  are functions involving the n-
vector x of parameters nxxx ,...,, 21  and the independent 
variables, e.g., frequency, of the m data samples [12]. Error 
criteria that are commonly used in parameter estimation 
problems include least absolute value (LAV), least squares 
(LS), minimax, and maximum likelihood. But the LS 
criterion is by far the most commonly used one for curve 
fitting and parameter estimation. In its generalized form, the 
LS criterion 
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minimizes the weighted (by wi) sum of the squared errors 
(differences from the m data samples). It was chosen for this 
work due to its commonplace use, its relation with other 
system identification algorithms [13, 14], and its availability 
in different software packages.  

A linear LS algorithm and a nonlinear LS algorithm 
were used to estimate the parameters of the various models. 
The former can be applied to relatively simple functions and 
was used for the RIC model. The latter was necessary for the 
other models because of the nonlinear dependence of their 
impedance functions on the parameters. Unlike the linear LS 
algorithm, the nonlinear LS algorithm may produce 
parameter estimates that correspond to a local error 
minimum rather than a global minimum. In order to 

circumvent this problem, a procedure was used whereby 
each estimation run began with an initially guessed 
parameter estimate vector produced by a random number 
generator, with a uniform distribution over a range of 
positive values bounded below by 0. A total of at least 15 
guesses were used per model in the attempt to find the 
globally optimal (least-squares error) solution for fitting each 
set of data. 
 

IV.  RESULTS AND DISCUSSION 
 

A. Model estimation errors 
Tables 1, 2 and 3 show the estimation errors obtained 

for each model in fitting the FOT data acquired from the 
group 1, 2 and 3 subjects, respectively. The “ZR LS error” 
and “ZX LS error” refer to the least-squares error in fitting 
the ZR (Rrs) and ZX (Xrs) data, respectively, while the “Z LS 
error” equals the sum of these two errors. 

 
Table 1. Comparison of parameter estimate errors for each model 

using the nonlinear least squares algorithm on the healthy subjects’ data. 
 

 Group 1   ZR LS error ZX LS error Z LS error 
RIC model  0.02132 0.01743 0.03875 
Ext. RIC model 0.02132 0.01743 0.03875 
Augm. RIC model 0.00062 0.01857 0.01918 
DuBois’ model 0.00743 0.01419 0.02162 
aRIC+Ip model 0.00054 0.01592 0.01646 
Nagels’ model 0.02132 0.01743 0.03875 
Mead's model 0.00062 0.01857 0.01918 

 
Table 2. Comparison of parameter estimate errors for each model 

using the nonlinear least squares algorithm on the Group 2 patients’ data. 
 

 Group 2   ZR LS error ZX LS error Z LS error 
RIC model  0.38973 0.08050 0.47023 
Ext. RIC model 0.04777 0.04897 0.09674 
Augm. RIC model 0.04777 0.04897 0.09674 
DuBois’ model 0.01420 0.02046 0.03466 
aRIC+Ip model 0.04777 0.04897 0.09674 
Nagels’ model 0.01419 0.02046 0.03466 
Mead's model 0.01420 0.02046 0.03466 

 
Table 3. Comparison of parameter estimate errors for each model 

using the nonlinear least squares algorithm on the Group 3 patients’ data. 
 

 Group 3   ZR LS error ZX LS error Z LS error 
RIC model  1.10780 0.28323 1.39103 
Ext. RIC model 0.08846 0.07384 0.16230 
Augm. RIC model 0.08846 0.07384 0.16230 
DuBois’ model 0.00802 0.01069 0.01870 
aRIC+Ip model 0.08843 0.07387 0.16230 
Nagels’ model 0.01069 0.01124 0.02193 
Mead's model 0.00597 0.00718 0.01315 

For all 3 groups, it is seen that Mead’s model provides a 
better fit than the aRIC model, which in turn provides an 
equally good or better fit than the eRIC model. This is 
expected since the eRIC model is a simplification of the 
aRIC model, which is in turn a simplification of Mead’s 
model. Also as expected, the Nagels’ model provides a 
worse fit than the Mead model, while the aRIC+Ip model fits 
better than the aRIC model. 

It is significant that the aRIC+Ip model provides the best 
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fit for the healthy subjects, while Mead’s model provides the 
best fit for both groups of asthmatic patients. This finding is 
similar to what we found for modeling IOS data from normal 
and COPD adults [12]. Also note that the RIC model’s 
fitting error increases in progression from healthy subjects to 
mild asthmatics to severe asthmatics. 
 

B. Model component values 
Considering the various model component values for 

minimal fitting error, we found unphysiologically large 
estimates (mostly of Cl but occasionally of Cw) in the Mead 
models of all 3 groups’ impedances. We also found a mix of 
mostly unphysiologically large (mostly Cl but occasionally 
Cw and Ca) and occasionally physiologically reasonable 
estimates in the Nagels models of all 3 groups’ impedances. 
Moreover, we found that our estimation results for the Mead 
and Nagels models produced least-squares-optimized 
estimates (mostly of Cl but occasionally of Cw) in the Mead 
and (mostly Cl but occasionally Cw and Ca) in the Nagels 
models that could vary by 2 to 3 orders of magnitude, i.e., 
multiple near-optimal solutions. On the other hand, the 
estimation results for the aRIC, aRIC+Ip and DuBois models 
produced precise, reliable optimal estimates. We believe this 
phenomenon indicates that the Mead and Nagels models are 
overparameterized. See Table 4 for an illustrative example of 
these estimated model parameter values. 

We also noted that the eRIC model has an 
unphysiologically small estimate of peripheral airway 
compliance for the group of healthy subjects (resulting in a 
fitting error equal to that of the RIC); this must be due to its 
lack of ability to model positive frequency dependence of ZR, 
which is exhibited by the group 1 data. A lack of inherent 
capability probably explains why the aRIC model yielded an 
unphysiologically large peripheral airway resistance estimate 
for group 1 data. Finally, the Ce estimates were negligible for 
the group 2 and group 3 data, most likely due to the fact that 
their ZR measurements decrease to a minimum at 28 Hz 
before increasing, so only negative frequency dependence of 
ZR is being modeled. 

 
V.  CONCLUSIONS AND FUTURE WORK 

 

In this study, we compared the least-squares error 
performance of the RIC, eRIC, aRIC, aRIC+Ip, DuBois, 
Nagels and Mead models in fitting PRN FO-acquired 
respiratory impedance data from healthy subjects, mild 
asthmatics and severe asthmatics. We found that the aRIC+Ip 
and DuBois models yielded the lowest fitting errors (for the 

healthy subjects group and the 2 asthmatic patients groups, 
respectively) without also producing unphysiologically large 
component estimates. Hence, these models appear to be the 
most useful ones (at present) for further studies on PRN FO-
based computer-aided detection and treatment of asthma, 
such as investigating which of these models’ parameters can 
discriminate between normal and abnormal airway function.  
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Table 4. Estimated model parameter values for Group 2 (mild asthmatics) data 

 
Model Estimated parameter values (with units of cmH2O/l/s, cmH2O/l/s2 and l/cmH2O for resistances, inertances and compliances) 
RIC model R = 4.0867, I = 0.0068211, C = 0.022331 
Ext. RIC model R = 3.8895, Rp = 4.7694, I = 0.0073491, C = 0.019236 
Augm. RIC model R = 3.8895, Rp = 4.7692, I = 0.0073491, Cp = 0.019236, Ce = 2.22E-14 
Mead's model  Rc = 3.646, Rp = 0.98159, I = 0.009738, Cb = 0.01492, C1 = 204.02, Cw = 0.027941, Ce = 2.41E-14 
Nagels' model R = 3.6461, Rp = 1.232, I = 0.0097379, Ca = 0.013319, C1 = 0.11062, Cw = 0.036067 
aRIC+Ip R = 3.8896, Rp = 4.7692, I = 0.007349, Cp = 0.019306, Ip = 0.001602, Ce = 2.44E-14 
DuBois' model  Raw = 3.6535, Iaw = 0.0097301, Cg = 0.010323, Rt = 2.4501, It = 0.0029401, Ct = 0.017614 
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