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Abstract— Passive filling is a major determinant for the pump
performance of the left ventricle and is determined by the filling
pressure and the ventricular compliance. We quantified the
influence of left-ventricular shape on the overall compliance
and the distribution of passive fiber stress and strain during
the filling period in normal myocardium. Hereto, fiber stress
and strain were calculated in a finite element analysis during
the inflation of left ventricles of different shape, ranging from an
elongated ellipsoid to a sphere, but keeping the initial cavity and
wall volume constant. The passive myocardium was described
by an incompressible hyperelastic material law with transverse
isotropic symmetry along the muscle fiber directions. A realistic
transmural gradient in fiber orientation was assumed. While
compliance was not altered, the transmural distribution of
both passive fiber stress and strain was highly dependent on
ventricular shape, where more spherical ventricles exhibited a
higher subendocardial gradient in both quantities.

I. INTRODUCTION

The performance of the heart as a circulatory pump

depends on the filling capacity of the left ventricle (LV),

which is the muscular cardiac chamber that pumps oxy-

genated blood from the pulmonary system to the peripheral

organs. This filling capacity will be determined by its passive

mechanical behaviour, i.e. the compliance. This compliance

in its turn depends strongly on the microscopic structure

of the muscle wall, i.e. the myocardium, which is mainly

composed of the muscle cells, called myocytes, and connec-

tive tissue. Experiments have shown that the myocytes are

organized in a complex helical fiber network [1], indicating

a mechanical behaviour that is locally anisotropic with a

preferred direction along the fiber. The mechanics of the

myocytes can therefore be described by estimation of local

fiber stress and strain. However, a robust regional quantifica-

tion of these quantities remains a challenge. Current methods

to measure intramyocardial stresses are invasive and give

only information about isotropic pressures [2], which leaves

computational modeling as the only alternative to obtain

regional fiber stress and strain values.

Several modeling studies have been performed with this

aim, such as [3]-[9]. Different degrees of approximations

in either geometry or fiber distribution have been adopted

in these studies, for the sake of mathematical simplification

or reduction of computational cost. However, the focus

has been mainly on optimizing constitutive parameters or

fiber orientations, starting from a certain chosen undeformed

geometrical configuration of the left ventricle. Only limited

attention has been paid to geometrical differences in the LV

shape and it is not clear what influence this has on fiber

stress and strain. In several patho-physiological conditions

such as ischemia, changes in mechanical loading of the left

ventricle is often accompagnied by a change in LV shape

through a process called remodelling [10], in which the LV

tends to become more spherical. From this point of view, it

can be expected that changes in LV shape will be a factor

of influence on regional mechanics. To test this hypothesis,

a comparison by means of finite element (FE) modeling has

been performed in the present study, in which the fiber stress

and strain at the end of the passive filling phase, i.e. end

diastole (ED), was examined for several LV shapes with

different sphericity.

II. METHODS

A. Geometrical description

In this study, the geometry of the undeformed left ventricle

was approximated as a truncated thick-walled ellipsoid. This

simplification can be motivated by the strongly ellipsoidal

character of the LV shape and is often adopted in mechan-

ical studies of left-ventricular deformation ([3]-[6], [11]).

The ellipsoidal geometry can most naturally be described

using prolate spheroidal coordinates (λ, µ, θ), of which the

transformations to Cartesian coordinates (x, y, z) are given

by:

x = f sinh(λ) sin(µ) cos(θ)

y = f sinh(λ) sin(µ) sin(θ) (1)

z = f cosh(λ) cos(µ),

where f is the focal distance. As shown in Fig. 1, the λ-

coordinate varies transmurally from the endocardial (inner)

to the epicardial (outer) border, the µ-coordinate longi-

tudinally from base to apex and the θ-coordinate in the

circumferential direction. It is assumed that the undeformed

configuration represents the LV in diastasis. In order to

change the sphericity of the left ventricle, a reference shape

was first defined based on the dimensions as given in [12].

The truncation angle at the basal side of this reference

ventricle was chosen to be µ = π/3.3. The equatorial cavity

diameter and wall thickness was set to 3.8 and 1.3 cm

respectively and the short-to-long-axis ratio of the cavity was

taken to be 0.45. This choice of dimensions resulted in a

cavity and wall volume of 56.6 ml and 125.4 ml respectively

and a basal cavity diameter of 3.1 cm. The cavity short-to-

long-axis ratio was subsequently changed to the values given

in Table I to obtain ventricles with different sphericity while
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Fig. 1. Illustration of the ventricle geometry. The prolate spheroidal
coordinates are shown on the left, while the different shapes of the ventricles
with short-to-long-axis ratio of 0.25 (blue), 0.45 (grey) and 0.99 (red) are
shown on the right.

the cavity volume and basal diameter were kept constant at

the reference values (see Fig. 1). By doing so, the equatorial

cavity diameter changed to the values as given in Table

I. The epicardial borders were determined by keeping the

wall volume constant at the reference value, resulting in

changes of the equatorial wall thickness as listed in Table

I. To indicate the transmural position in the LV wall, a

relative transmural position is defined that varies from 0 at

the endocardial border to 1 at the epicardial border.

B. Finite element framework

During the cardiac cycle, the myocardium undergoes large

deformations. As a consequence, the nonlinear theory of

finite deformation [13] needs to be applied to describe

its mechanical behaviour. As stated above, it is also often

convenient to use curvilinear prolate spheroidal coordinates.

Therefore, a FE framework as proposed by Costa et al. [11]

was implemented to model finite elastic deformation of the

left ventricle in a curvilinear coordinate system, allowing

for a reduced number of elements in the FE mesh. This

framework was integrated with the NOX and AztecOO

solver-packages from the Trilinos project [14] to solve

the resulting nonlinear equations using an iterative Newton

based strategy. As validation of this FE implementation,

the computed solution for a deformed cylindrical tube with

the Mooney-Rivlin constitutive law was compared with the

analytical solution derived by Rivlin [15]. In this study, only

static equilibrium was considered without any body forces

or couple stresses present. The solution was considered to

TABLE I

SHORT-TO-LONG-AXIS RATIO AND EQUATORIAL CAVITY DIAMETER AND

WALL THICKNESS FOR THE DIFFERENT VENTRICLE SHAPES.

axes ratio 0.250 0.375 0.450 0.675 0.990

eq. cavity diam. (cm) 3.302 3.620 3.800 4.272 4.810

eq. wall thickness (cm) 1.239 1.287 1.300 1.292 1.223

Fig. 2. Helical fiber orientations in the LV-wall, modeled via a transmural,
linearly varying distribution of the fiber angle α(λ), shown at different
longitudinal levels.

be converged when the normalized two-norm of the residual

vector becomes smaller than 10−6.

For each ventricle shape, a structured FE mesh was con-

structed in prolate spheroidal coordinates. Each mesh was

composed of 10 transmural by 30 longitudinal elements,

while only one element was taken in the circumferential

direction because of the symmetry of the problem.

C. Boundary conditions

Because the undeformed configuration (zero-stress) of the

LV was considered to be in the diastasic phase of the heart

cycle, a cavity pressure of 8 mmHg (1.066 kPa) was im-

posed on the endocardial surface to simulate ED conditions.

Following [3] and [11], the epicardial pressure was taken to

be zero. The endocardial basal node was constraint in all

coordinates to account for the relative stiff valve annuli and

to prevent longitudinal translation.

D. Fiber distribution and constitutive law

For simplification, the anisotropic helical orientation of

the myocytes in the LV wall was approximately modeled

by a transmurally varying fiber angle distribution, α(λ), as

illustrated in Fig. 2. This angle defines a local rotation around

the transmural axis relative to the circumferential direction.

Based on the study by Guccione et al [7], a linear variation

from 75 degrees at the endocardium to -45 degrees at the

epicardium was chosen. The LV myocardium was modeled

as an incompressible hyperelastic material with transverse

isotropic symmetry aligned with the local fiber direction. The

strain energy function W ∗ as proposed by Guccione et al [7]

was used:

W ∗ = W − p(J − 1) (2)

W = (C/2)(eQ
− 1) (3)

Q = 2b1(ERR + EFF + ECC) + b2E
2

FF

+b3(E
2

CC + E2

RR + E2

CR + E2

RC)

+ b4(E
2

RF + E2

FR + E2

FC + E2

CF ). (4)

In (2), J is the determinant of the deformation gradient

tensor. To obtain incompressibility, J must be equal to one,
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Fig. 3. ED fiber stress and strain values obtained for the different left-ventricular shapes, shown in the top and bottom row respectively. The transmural
distribution at approximately mid-level, indicated by the black lines in (b), are plotted in (a) for all LV shapes. The distributions in a longitudinal-transmural
cross-section are shown in (b) for the LV shapes with short-to-long-axis ratios of 0.25 (left), 0.45 (middle) and 0.99 (right).

which is imposed here via a Lagrange multiplier p. The

isochoric elastic response is determined by the function W .

In (4), F,C and R indicate the fiber, cross-fiber in-plane and

transmural direction respectively. The Green-Lagrange strain

tensor components referred to these fiber coordinate axes are

given by Eij . The values of the function parameters were

chosen as suggested in [7]: C = 0.644, b1 = 2.547, b2 =
15.09, b3 = 0 and b4 = 10.48, which makes the passive

myocardium stiffer in the fiber direction.

III. RESULTS

Because of the circumferential symmetry, the calculated

fiber stress and strain distributions are only considered for

a longitudinal-transmural cross-section, which are shown in

Fig. 3. Both the fiber strain and stress are transmurally

more heterogeneously distributed when the ventricle shape

becomes more spherical. In the subendocardial region, both

fiber stress and strain values increase strongly while the

transmural gradients become steeper. In the mid-wall and

subepicardium, on the contrary, the values decrease and the

transmural gradients flatten.

The resulting ED volume of the LV cavity does not vary

significantly between the different ventricles. An ED volume

of 82.29 ml was obtained for the most elongated ventricle

(axes ratio = 0.25) which only dropped slightly to 80.29 ml

for the most spherical one (axes ratio = 0.99). The ventricle

compliances, defined as ∆volume/∆pressure, therefore only

changed from 24.10 ml/kPa to 22.22 ml/kPa respectively.

The deformed LV wall was characterized by a circumfer-

ential rotation which increased from the base towards the

apex in all cases as shown in Fig. 4. It can be seen that

when the sphericity of the LV wall increases, the amount of

rotation decreases on every relative height and the torsion,

i.e. rotation/relative height, becomes less linear.

IV. DISCUSSION AND CONCLUSIONS

In this study, the influence of left-ventricular shape on

passive fiber stress and strain has been examined by changing

the sphericity in a computational finite element model for

a chosen transmural fiber angle distribution. The calculated

values obtained for the reference LV model, which was con-

sidered to have a normal geometry, showed good agreement

with the results reported in previous studies such as [7], [8]

and [11]. Values in the apex and basal-endocardial region

were considered unphysiological because of boundary arte-

facts, which were also obtained in [5]. From Fig. 3, it follows

that changes in regional values and gradients of passive fiber

stress and strain occur when the sphericity and hence the

curvature of the LV wall is increased. The main influence

seems to be in the transmural gradient, which becomes very

steep in the subendocardium and flattens in the midwall and

subepicardium, while the values themselves increase in the

subendocardium but decrease in the midwall and subepi-

cardium. As a consequence, the myocytes in an increasingly

larger fraction of the midwall and subepicardium are pre-

stretched with less than 5% when the ventricle becomes
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Fig. 4. The rotation in the midwall (relative transmural position = 0.5) of
the deformed LV wall for all LV shapes. The relative height is defined as
the relative distance along the z-axis from base to apex.

more spherical. Assuming that myocyte characteristics are

homogeneous in the LV wall, this would lead to a severe

imbalance in regional work load of the myocytes in the

ejection phase, since active contraction of the myocytes

depends on the amount of pre-stretch [16]. This may suggest

that a more spherical ventricle would contract less efficiently.

However, it is not certain that passive fiber stress and

strain distributions are really homogeneous in the beating

left ventricle. This has been hypothesized in [3]-[6] as a

criterion to optimize the fiber angle distribution, while the

results obtained by Guccione et al. [8] seem to indicate some

level of heterogeneity. Surprisingly, the substantial change in

shape does not seem to effect the filling capacity of the left

ventricle, since the ED volumes and associated compliances

obtained in this study hardly show any variability. The results

also show that the helical fiber anisotropy causes a torsion

of the deformed LV wall around the longitudinal z-axis,

which has been observed in the beating heart [17]. However,

compared to the values given in [17], the rotation of the

LV wall seems to be overestimated in the present study,

especially in the apical region, which may be caused by the

simplification of the fiber angle distribution in the LV model.

Nevertheless, Fig. 4 shows that the LV torsion decreases

with increasing sphericity of the LV wall. The increase in

the subendocardial stress gradient may be related to this

decrease of LV torsion, since Guccione et al. [7] have shown

that the presence of torsion can help in the reduction of

subendocardial stress gradients in the passive myocardium.

For simplicity, no residual stress was considered in the

undeformed configuration of the LV wall. The presence

of residual stress has been observed experimentally in the

unloaded ex-vivo heart [9] and has been shown to reduce

subendocardial stress gradients [7]. The subendocardial fiber

stress may therefore be overestimated in this study.

In conclusion, it has been shown in this computational finite

element study that geometry can indeed be a factor of influ-

ence for the mechanics of the passive LV myocardium. Since

only a simplified geometrical model and fiber distribution

have been considered, further examination is required to

determine whether this still applies for a more realistic model

of the left ventricle which incorporates geometry and fiber

distribution validated by measurements. However, the results

presented here indicate that the choice of left-ventricular

geometry must also be taken into account in the interpretation

of calculated passive fiber stress and strain distribution,

especially in optimization studies such as [3]-[6].
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