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Abstract— BrainNetVis is an application, written in Java,
that displays and analyzes synchronization networks from brain
signals. The program implements a number of network indices
and visualization techniques. We demonstrate its use through a
case study of left hand and foot motor imagery. The data sets
were provided by the Berlin BCI group. Using this program
we managed to find differences between the average left hand
and foot synchronization networks by comparing them with the
average idle state synchronization network.

I. INTRODUCTION

One of the major issues in neuroscience is to describe how
different brain areas communicate with each other during
perception, cognition, action as well as during spontaneous
activity in the default or resting state. Friston [1] defined
functional connectivity as the statistical dependence between
the activations of distinct and often well separated neuronal
populations. Network models and graph theory provide a
common framework for describing functional connectivity.
In this paper we present a software tool, called BrainNetVis,
for the analysis and visualization of brain functional net-
works. We demonstrate the tool and discuss the implemented
network measures and visualization techniques using EEG
data from BCI IV competition and working at sensors space.
However the tool is not restricted to sensors space since
the input consists of synchronization matrices. Therefore our
discussion is valid for the generators space as well.

II. MATERIALS AND SIGNAL PROCESSING

A. Experimental Setup

We use motor imagery (without feedback) data sets pro-
vided by the Berlin BCI group for the Brain Computer
Interface (BCI) competition IV [2]. Four of data sets 1, the
a, b, f and g, were recorded from four healthy subjects. Brain
activity was recorded with multi-channel EEG amplifiers
using 59 channels band-pass filtered between 0.05 and 200
Hz and sampled at 1000 Hz. For each subject two classes
of motor imagery were selected: left hand (L), and foot (F)
(side chosen by the subject; optionally also both feet).

This research was supported in part by the European Commission FP7
‘Virtual Physiological Human Network of Excellence’ grant (project no

223920).
V. Tsiaras, D. Andreou and I. G. Tollis are with the Institute of Computer

Science, Foundation for Research and Technology, Heraklion 71110, Greece
{tsiaras,andreou,tollis}@ics.forth.gr

V. Tsiaras and I. G. Tollis are with the Department of Com-
puter Science, University of Crete, Heraklion, Crete, GR-71409 Greece
{tsiaras,tollis}@csd.uoc.gr

B. Power Spectral Density Estimation

The multichannel EEG was filtered using the Common
Spatial Patterns (CSP) spatial filter and then the Power Spec-
tral Density (PSD) was calculated using Welch’s method.
The CSP [3] is a technique to analyze multi-channel data
based on recordings from two classes. Let Σ(L) ∈ Rn×n and
Σ(F ) ∈ Rn×n be the estimates of the covariance matrices of
the (assumed to be zero mean) EEG signal in the two classes
(left hand and foot imagination):

Σ(c) =
1
|Ic|

∑
i∈Ic

XiX
T
i , c ∈ {L,F}

where Ic is the set of indices corresponding to trials be-
longing to class c ∈ {L,F}. By extracting the eigenvectors
and eigenvalues from Σ = Σ(L) + Σ(F ) = U0ΛUT

0 we
can calculate the spatial factors matrix Q = U0Λ1/2 and
the whitening matrix P = Λ−1/2UT

0 . Then we calculate
matrices S(L) = PΣ(L)PT and S(F ) = PΣ(F )PT and
their eigenvalues and eigenvectors: S(L) = UΛ(L)UT and
S(F ) = UΛ(F )UT , where Λ(L)+Λ(F ) = I and Λ(L)

ii ≤ Λ(L)
jj

when i < j. Taking the first r (resp. last r) eigenvectors from
U , we obtain Ur ∈ Rr×n to compute the filtered EEG signal

X(F )
r = QUrU

T
r PX (resp. X(L)

r = QUrU
T
r PX)

C. Synchronization Measures

Signal segments of duration 4s that correspond to motor
imagery or idle state are bandpass filtered using a zero
phase forward and reverse Butterworth filter which does not
significantly affect the reconstruction of the dynamics of
a system [4]. Then for mu and beta frequency bands, the
synchronization between all pairs of channels is calculated
using a) a non-linear bivariate measure for generalized syn-
chronization and b) partial directed coherence.

1) A Robust Interdependence Measure (RIM): Given two
scalar time series {x(t)}t∈T and {y(t)}t∈T with T =
{1, . . . , N}, which have been measured from dynamical sys-
tems X and Y , the dynamics of the systems are reconstructed
using delay coordinates [5]

x(t) = [x(t), x(t+ τ), . . . , x(t+ (m− 1)τ)]T

and similarly we reconstruct y(t) from {y(t)}t∈T, with an
embedding dimension m and a delay time τ for n ∈ T′ =
{1, . . . , N ′}, where N ′ = N − (m− 1)τ .

Let rt,j and st,j , j = 1, . . . , k, denote the time indices
of the k nearest Euclidean neighbors of x(t) and y(t),
respectively. Temporally correlated neighbors are excluded
by means of a Theiler correction: |rt,j − t| > m · τ and
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|st,j−t| > m·τ . For each t ∈ T′, the average square distance
of y(t) to all remaining points in {y(j)}j∈T′ is given by

Rt(Y ) =
1

N ′ − 1

N ′∑
j=1,j 6=t

|y(t)− y(j)|2

For each yt, the X-conditioned mean squared Euclidean
distance is defined as

R
(k)
t (Y/X) =

1
k

k∑
j=1

|y(t)− y(rt,j)|2

Quian Quiroga et al. [6] defined the dependence measure:

N(Y/X) =
1
N ′

N ′∑
t=1

Rt(Y )−R(k)
t (Y/X)

Rt(Y )
(1)

The measure N(X/Y ) is defined in complete analogy and
as interdependence measure between X and Y we use the
mean value (N(X/Y ) +N(Y/X))/2.

2) Partial Directed Coherence (PDC): Let {x(t)}t∈N
with x(t) = [x1(t), . . . , xn(t)]T be a stationary n-
dimensional time series with mean zero. Then a vector
autoregressive model of order p for x is given by

x(t) =
p∑

r=1

A(r)x(t− r) + ε(t) (2)

where A(r) are the n× n coefficient matrices of the model
and ε(t) is a multivariate Gaussian white noise process with
covariance matrix Σ. In this model, the coefficients Aij(r)
describe how the present values of xi depend linearly on
the past values of the components xj . In order to provide
a frequency domain measure for Granger-causality, Baccala
and Sameshima [7] introduced the concept of PDC. This
measure is based on the Fourier transform of the coefficient
series

Ā(ω) = I −
p∑

r=1

A(ω)e−iωr (3)

More precisely, the PDC from xj to xi is defined as

πi←j(ω) =
|Āij(ω)|√∑n
l=1 |Ālj(ω)|2

(4)

The PDC πi←j(ω) takes values between 0 and 1 and vanishes
for all frequencies ω if and only if the coefficients Aij(r)
are zero for all r = 1, . . . , p.

Due to limited number of data samples, PDC was calcu-
lated between each pair of channels by taking into account
and removing the linear effect of O1 and O2 channels [8].

III. NETWORK ANALYSIS AND VISUALIZATION

A graph G = (V,E) defined on a set of vertices V =
{v1, . . . , vn} and edges E = {e1, . . . , em}, where each edge
e ∈ E is an ordered or unordered pair of vertices. An ordered
pair e = (u, v) ∈ V × V is called a directed edge, while an
unordered pair e = {u, v}, where u, v ∈ V , is called an
undirected edge. In case u = v, e is called a self-loop. In
our study we consider simple graphs that is graphs without

self-loops and multiple edges. Also the cardinality of V is
denoted by n (i.e n = |V |).

Graphs augmented by edge values are called weighted
networks in complex networks literature and valued networks
in social networks literature. We prefer the term valued
network since in graph theory the term “weight” has been
associated with distance, cost and dissimilarity whereas the
term “valued” is more general and does not conflict with
the notions of synchronization and dependence. The term
“network” means a graph that represents something real.
A valued network G = (V,E, ω) consists of a graph with
vertex set V and edge set E augmented with an edge value
function ω : E → R that assigns to each edge e ∈ E
a real value ω(e). Every valued network G = (V,E, ω)
corresponds to a real n × n matrix W = (wij), i, j ∈
{1, 2, . . . , n}, where wij is equal to value ω(e) of edge
e = (vi, vj) if e ∈ E, or to 0 otherwise. If we reserve value
0 to mean the absence of an edge then the correspondence
between G and W is one-to-one. In this work we consider
a subset of valued networks, which we call synchronization
networks, where edge values are restricted to interval (0, 1]
and interpreted as strength of dependence between vertices.

In synchronization networks higher edge values indicate
stronger dependencies. To define the length of an edge we
should at least reverse the order of edge values by applying,
for example, the inverse function g : (0, 1]→ [1,+∞) with

g(x) =
1
x

(5)

We also propose the function g : (0, 1]→ [1,+∞) with

g(x) = 1− log2(x) (6)

The length of a path from vertex u to vertex v is the sum
of the lengths of the edges of the path. The shortest path
distance from vertex u to vertex v is denoted by dG(u, v). If
vertex v is unreachable from vertex u then dG(u, v) = +∞.

A. Vertex Level Measures

The importance of a vertex due to its position in a network
is quantified with centrality measures. There is evidence
that the importance of a vertex is positively or negatively
correlated with the relevance of the vertex to a task.

1) Strength Centrality: Strength centrality is the extension
of degree centrality to synchronization networks. For each
vertex v ∈ V is defined as the strength s(v) of v. The
corresponding normalized measure is:

cS(v) =
1

n− 1
s(v) =

1
n− 1

∑
e={v,u}∈E

ω(e) (7)

2) Shortest-Path Efficiency: Latora and Marchiori [9]
defined efficiency as:

cEf (v) =
1

n− 1

∑
u 6=v

1
dG(v, u)

(8)

Note that Eq. 8 can also be used for disconnected graphs.
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3) Hubbell’s Centrality: Hubbell [10] suggested a cen-
trality measure based on the solution of a system of linear
equations.

c = αWT c + e (9)

where c = [c(v1), c(v2), . . . , c(vn)]T is the vector of cen-
tralities, e = [e(v1), . . . , e(vn)]T is the vector of exogenous
factors and 0 < α < 1/λ1 where λ1 is the maximum
eigenvalue of W . Equation 9 has the solution:

c = (I − αWT )−1e (10)

And the normalized Hubbell’s centrality is defined as:

cHBL = c/ ‖ c ‖p (11)

In our work we set

e(v) =
maxu∈V (p(u))− p(v) + ε

maxu∈V (p(u))−minu∈V (p(u)) + ε
(12)

where p(v) is the (average) power spectrum at mu or beta
band of the corresponding signals and ε is a small number.

B. Network Level Measures

1) Clustering coefficient: For a vertex v the clustering
coefficient c(v) measures the connectivity of its direct neigh-
borhood. The clustering coefficient C(G) of a graph is the
average of c(v) taken over all vertices. A definition that uses
matrix W was proposed by Zhang and Horvath [11].

cZ(v) =
1

maxi,j(wij)
·
∑

i6=j∈V \{v} wviwijwjv∑
i 6=j∈V \{v} wviwjv

(13)

where maxi,j(wij) is a normalizing factor.
2) Assortativity: The assortativity coefficient was first

defined by Newman [12] for undirected graphs. Leung et al.
[13] extended this definition to cover the class of undirected
synchronization networks.

r =
4H

∑
{u,v}∈E ω(u, v)s(u)s(v)−B

2H
∑
{u,v}∈E ω(u, v)(s(u)2 + s(v)2)−B

(14)

where s(v) is the strength of vertex v, H =
∑

e∈E ω(e) and

B =
[∑
{u,v}∈E ω(u, v)(s(u) + s(v))

]2

.

C. Network Visualization

BrainNetVis allows the user to define the location, label,
font, color and size of vertices. Vertices’ centrality measures
and attributes are visualized through the color of vertices
via a colormap. Additionally the implemented measures are
displayed in a tabular format on a second window.

Each edge is visualized using shades of grey according to
rule greyshade = 1 − ω(e). Alternatively, the edge values
define the edge colors via a colormap. Another option is to
convert a synchronization network G = (V,E, ω) to a graph
G′ = (V,E′) where E′ = {e ∈ E | ω(e) ≥ θ}, where θ is a
user defined threshold and then to visualize graph G′ [14].

In order to show the network structure, two network
visualization techniques have been implemented. The stress
majorization technique of Gansner et al. [15] and the binary
stress model of Koren et al. [16].

IV. RESULTS

For each subject, frequency band and synchronization
method we calculated synchronization matrices for every left
(L), foot (F) or idle (I) 4 sec period, within the subject’s
session, that passed the visual check for artifacts. Specifically
we calculated more than 80 synchronization matrices for
each state (L, F, I) and subject. Then for each subject we
calculated the average matrix per state in order to find
differences in channels’ synchronization between the states.
In the following we call L, F and I the average left, foot and
idle state networks. The first observation is that functional
networks constructed from motor imagery EEG data are
dominated by edges that are irrelevant to motor imagery
tasks. Especially close-by electrodes are highly synchronized
which reflects redundancies in the measurement due to
volume conduction rather than brain interaction [17] (see Fig.
1). The second observation is that networks L and F look and
are very similar. Network L has clustering and assortativity
coefficients 0.51 and 0.126 respectively, while network F has
clustering and assortativity coefficients 0.497 and 0.13. These
results agree with the results of Calmels et al. [18]. To extract
information from networks L and F we compare each one
of them with network I. We consider a network that has the
same set of vertices as networks L, F and I and has an edge
from vertex j to vertex i (i← j due to convention of PDC) if
and only if W (L)

ij −W
(I)
ij > 0 (resp. W (F )

ij −W
(I)
ij > 0). By

subtracting network I from network L (resp. F) most noisy
edges disappear and in the resulting network one can discern
edges related to motor imagery task. For subjects a and g,
when networks have been calculated using PDC then the
resulting network L minus I has long edges that span both
hemispheres and which can be attributed to motor imagery
task [8] or to occipital/parietal alpha activity [19]. The long
edges are less apparent in network F minus I. When networks
have been calculated using the RIM or the magnitude square
coherence methods the long edges between hemispheres of
network L minus I are present but mixed with other edges
that are adjacent to vertices O1 and O2. We repeated this
procedure by changing the role of networks I and L (resp.
I and F). Namely from network I we subtracted network L
(resp. F). In the left (resp. right) graph of Fig. 2 we see that
network I minus L (resp. I minus F) has more edges close
to the left hand (resp. foot) area of the sensorimotor cortex.
There is inter-subject variability since for subjects b and f the
long edges across hemispheres appear in networks I minus
L and I minus F.

A feature of the tool is that it allows the ranking of
vertices according both to their attributes and to their role in
a network. In the example of Fig. 2 each vertex is assigned
the PSD of the corresponding channel at mu band. In order
to improve the signal to noise ratio we spatially filter the
multivariate signal using CSP and then we calculate the PSD
of each channel at mu band. Then we visualize the PSDs
using a colormap and we calculate Hubbell’s centrality which
combines the PSD with the role of each vertex in a network.
We found that the important vertices of network I minus
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Fig. 1. L (left figure) and F (right figure) networks at mu band for subject
a. The networks were calculated using the nonlinear RIM measure. Only
edges with values above 0.8 are shown.

Fig. 2. Above: Network I minus L (left figure) [resp. I minus F (right
figure)] at mu band for subject a. The networks were calculated using PDC.
The color of a vertex shows the (average) PSD of state L (resp. F). Red
colors correspond to higher values than blue colors. Below: Ranking of
vertices of network I minus L (resp. I minus F) according to Hubbell’s
centrality index.

L (resp. I minus F), according to Hubbell’s centrality, are
relevant to state L (resp. F) (see the tables of Fig. 2).

V. CONCLUSIONS AND FUTURE WORK

Conclusions: We created a Java application called Brain-
NetVis which is suitable for studying brain functional net-
works. The program runs as an application or it can be
called as a function from Matlab. We describe most of the
terminology and ideas behind this program with a case study
of motor imagery. Using this program we found that at
sensors space it is hard to distinguish between the left and
foot imagery states using the corresponding synchronization
networks because these networks are dominated by irrelevant
edges. We propose to construct the difference network L
minus I (resp. F minus I) as well as the difference network
I minus L (resp. I minus F). By visualizing the difference
networks we found that networks I and L (resp. I and F)

differ in interhemispheric edges and close to the left hand
(resp. foot) area of the sensorimotor cortex.

Future Work: Our effort with the development of Brain-
NetVis program will continue. In the next version of Brain-
NetVis we plan a) to implement community structure (graph
clustering) algorithms as well as graph drawing algorithms
that display the community structure and b) to extend its
functionality to series of networks in order to study the
dynamics of functional networks.

VI. ACKNOWLEDGMENTS

The authors wish to thank the Berlin BCI group for pro-
viding the EEG data set1 and L. A. Baccalá, K. Sameshima
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