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Abstract— The human rewards network is a complex system
spanning both cortical and subcortical regions. While much
is known about the functions of the various components of
the network, research on the behavior of the network as a
whole has been stymied due to an inability to detect signals at
a high enough temporal resolution from both superficial and
deep network components simultaneously. In this paper, we
describe the application of magnetoencephalographic imaging
(MEG) combined with advanced signal processing techniques
to this problem. Using data collected while subjects performed
a rewards-related gambling paradigm demonstrated to activate
the rewards network, we were able to identify neural signals
which correspond to deep network activity. We also show that
this signal was not observable prior to filtration. These results
suggest that MEG imaging may be a viable tool for the detection
of deep neural activity.

I. INTRODUCTION

The human reward processing system encompasses a
number of neural regions, both deep and superficial. Among
the regions involved are the striatum, the anterior cingulate
(ACC), and the orbitofrontal cortex (OFC). The striatum
has been implicated in integrating the signals from lower-
and higher-level sensory cortex and transmitting the resul-
tant signal to the frontal cortex [1]. The anterior cingulate
and OFC have both been implicated in mediating different
aspects of reward-related behaviors [2], as well as being
crucial in decision making [3]. There are a number of
other regions involved in rewards processing, each of which
has received significant attention in the literature [4]. Many
studies have been conducted in the animal model examining
neurotransmitter transmission between these regions, partic-
ularly dopamine [5], and the connectivity pathways between
the various involved regions are well established [6].

However, while the individual component nuclei and the
axonal connections between these regions is well understood,
functional connectivity between these regions is mostly un-
known. Some studies have attempted to examine the function
of particular subsets of the network using implanted elec-
trodes [7], [8], but due to the invasive nature of such exper-
iments, these studies have been limited mostly to the animal
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model. Additionally, while functional magnetic resonance
imaging (fMRI) and positron emission spectroscopy (PET)
have been used extensively to identify regions involved in
rewards processing, fundamental limitations of these imaging
modalities prevent them from being applicable in examining
the interactions between these regions on the timescale of
milliseconds.

There have been a number of methods suggested for
detecting deep activity via electroencephalography (EEG)
and magnetoencephalography (MEG). These methods in-
clude using a matched filter design [9], [10], the construction
of a boundary element model (BEM) to assist with solving
the inverse problem [11], [12], and utilizing previously
implanted deep electrodes [13]. However, none of these
methods were universally accepted. Utilizing a matched filter
design requires knowledge of or assumptions regarding the
signal of interest, which in many research applications is
unavailable. Utilizing implanted electrodes, while feasible in
patients being treated for epilepsy where such implants are
more common, is unrealistic for most other research and
clinical aplications. BEM construction requires a magnetic
resonance imaging (MRI) scan of the subject, which also
is not always available to the researcher. Additionally, any
computations executed on the BEM are limited by the
mesh density, and are by nature approximations of the true
magnetic field. Construction of a superfine mesh can be
prohibitively computationally expensive. The optimal deep
activity detector would be an analytical tool—not limited by
computational restrictions—which could be applied to any
MEG dataset, regardless of sensor geometry or availability
of external information.

The expanded signal space separation (exSSS) method
[14] accomplishes these goals. By combining analytical
signal processing techniques with the noise-reducing SSS
algorithm, the exSSS method can be applied to any MEG
dataset, regardless of acquisition details. In this paper, we
will discuss the application of the exSSS method to our MEG
dataset.

II. METHODS

The exSSS method utilizes two previously published sig-
nal processing techniques to extract deep signals. These
techniques are the SSS method and beamspace methods.

A. Signal Space Separation

The SSS noise-reduction method [15] utilizes a property
of the MEG imaging system to separate noise internal to the
head from noise external to the scanner [16], [17]. This is
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accomplished by noting that the MEG sensor array (i.e., the
MEG helmet) can be modeled as a source-free sphere within
our total source space. Considering the entire source space
in spherical coordinates, we can thus separate our source
space as sources internal to the sensor array—the brain
and surrounding tissues—and sources external to the sensor
array—the room, ambient lights, other external sources of
noise—separated by a source-free shell, representing the
MEG sensor array. One of the main advantages of SSS is
that there are very few assumptions made about the magnetic
sources; the only assumption is that there are no magnetic
sources on the sphere defined by the sensor array.

Mathematically, we can model this as follows. Given
Maxwell’s equation for a quasi-static magnetic field, ∇ ×
B = µJ, we note that the sphere defining the sensor array is
source-free, or J = 0 at r = R, where R is the distance from
the origin of the sphere defined by the sensor array to the
sensor array perimiter. As such, Maxwell’s equation can be
represented as ∇×B = 0. Using the identity ∇×∇Ψ = 0,
we define

B = −µ0∇Ψ, (1)

where Ψ is termed the scalar potential. Within the spherical
domain, we separate Ψ(ϕ, θ, r) = Φ(ϕ)Θ(θ)R(r) and solve
the resultant harmonic equation. Substituting the result in (1),
we obtain

B(r) = −µ0

∞∑
l=0

l∑
m=−l

αlm
νlm(θ, ϕ)
rl+1

− µ0

∞∑
l=0

l∑
m=−l

βlmr
lωlm(θ, ϕ)

≡ Bα(r) + Bβ(r), (2)

where νlm(θ, ϕ) and ωlm(θ, ϕ) represent modified spherical
harmonic functions, r represents the radius of the spherical
model of the sensor array volume, and αlm and βlm are
the multipole moments of the internal and external current
sources respectively [15]. Note that the magnetic field B(r)
is a function of both αlm and βlm; by simply dropping
the second term on the right-hand side of (2) we modulate
B to only depend on the internal signals, defined by the
coefficients αlm.

B. exSSS Overview

Using the SSS method, B can be separated into two
components, Bα and Bβ , as described in (2). The full details
of this derivation can be found in [14], but a brief description
follows. Bα and Bβ can be represented using leadfield-like
notation,

αlm =
∫
v′
λαlm(r′) · Jin(r′)dv′, (3)

where Jin represents the sources within the head (i.e., internal
to the sensor array) and λαlm is a lead field-like vector directly
related to the vector spherical harmonic function. In this
manner, we can apply the beamspace method to the SSS α

coefficients within Bα. This can formulated mathematically
as

max
T

tr(TTGdT)/vd
tr(TTGsT)/vs

, (4)

where Gs and Gd represents the Gram matrix corresponding
to the superficial and deep sources, respectively, and vs and
vd are constants used for normalization.

By solving this maximization problem we can construct
the exSSS filter as follows:

(α̃lm) = αlm
3

2l + 3
1

R3 − r̂3
R2l+3 − r̂2l + 3

r̂2l
, (5)

where R represents the sensor array radius and r̂ the radius
of the deep portion of the brain where signal should be
amplified. By modulating αlm in this fashion, the MEG
dataset is modified such that the deep signal is amplified
and the superficial signal attenuated. Note that no explicit
assumptions were made relative to the source coordinates,
source waveforms, or the presence of external information
regarding the physical structure of the source space (i.e.,
MRI-based BEM).

C. Behavioral Paradigm

Numerous behavioral paradigms have been designed to
activate various components of the rewards network. For our
study, we chose to replicate a recent gambling study by Liu
et al [18]. His paradigm consisted of showing subjects a
wager, giving an opportunity to bet or bank (save the wager
to their total winnings) on the roll of a die, and then observe
the outcome of the die roll. Note that this study design
enables subjects “regret” for poor decisions (see Table I).
When analyzing viewing the differential neural activation
between perceived correct and perceived incorrect trials,
Liu found strong, selective activation of the corticolimbic
rewards pathway. We adapted this paradigm for our study.
Our paradigm is in all ways identical to that described in
[18], save for the response phase; whereas Liu and colleagues
set the response phase to a constant two seconds due to
limitations with fMRI, we advanced to the feedback screen
as soon as a response was detected.

D. Data Collection & Analysis

We ran 6 subjects in our study, and data from one sub-
ject was eventually rejected due to significant uncorrectable
sensor noise. All subjects signed informed consent forms.
The study paradigm was written using EPrime Studio 1.1
(Psychology Software Tools; Pittsburgh, PA). Each subject
completed 320 trials, with a single trial consisting of one
”wager, decision, feedback, fixation” loop, as depicted in Fig.

TABLE I
SUMMARY OF POSSIBLE OUTCOMES FROM GAMBLING PARADIGM FROM

THE POINT OF VIEW OF THE SUBJECT.

Perceived Correct Perceived Incorrect

Bet & Win (earned $$) Bet & Lose (lost $$)
Bank & Lose (avoided losing $$) Bank & Win (could have won $$)

2916



1. All data was recorded using the 306-sensor Elekta Neuro-
Mag MEG system in the University of Pittsburgh Center for
Advanced Brain Magnetic Source Imaging (CABMSI) with
a recording frequency of 2 KHz. Each subject performed an
average of 171 correct and 145 incorrect trials (st. dev. 6.34
and 5.85, respectively), with an average of four no-response
(st. dev. 2.90).

MEG data analysis was completed using the MNE soft-
ware package (Martinos Center for Biomedical Imaging;
Massachusetts General Hospital, Bostonon, MA). For this
analysis, we examined only the 1300 ms surrounding the but-
ton press indicating a decision to bet or bank (500 ms prior to
800 ms post-push), indicated in Fig. 1 by the shaded region.
All data was averaged according to “perceived outcome”,
passed through a 1-40 Hz bandpass filter, processed with SSP
[9] using vectors acquired by the scanner at runtime, passed
through the SSS filter, differenced, and passed through the
exSSS filter. The differencing here refers to subtracting the
“perceived correct” condition from the “perceived incorrect”
condition; this was done to eliminate activation common to
both conditions.

The Elekta NeuroMag-306 system contains 102 magne-
tometers and 204 axial gradiometers. For the purposes of this
study, we examined only the magnetometers. The rationale
for this decision lies in the type of field detected by each.
The magnetometer will detect any change in field strength,
irrespective of changes elsewhere. Axial gradiometers mea-
sure differential activity between one side of the gradiometer
and the other [19]. For most superficial sources, both types
of sensors are appropriate, since the field change should
correspond with the local magnetic field gradient. However,
when detecting deep activity, the fields generated by the deep
dipoles theoretically span the entire head; on hemisphere
would be the positive side and the other the negative. Such a
broad gradient would be difficult to detect on the local scale,
while being easily visible in the magnetometers.

As can be seen in Fig. 2, no significant signal is visible
on the traces unprocessed by the exSSS method (Fig. 2a,
2c), whereas the datasets processed by exSSS contain notable
peaks at 220 (Fig. 2b) and 270 ms (Fig. 2d). We see peak and
additional peak at approximately 130 ms (Figs. 2b, 2d). This
peak was strongest in the occipital regions, corresponding
with the viewing of the feedback screen. In such a case, the
220 and 270 ms peaks could likely correspond to striatal and
orbitofrontal activation, respectively, occuring after process-
ing via visual regions. This is bolstered by the finding in the
mouse model that activation between the striatal and frontal
regions is delayed by 80-160 ms [7]. These findings, as
well as the approximate timepoint of the activation, persisted
through all subjects.

Additionally, in the processed dataset, signal was mostly
observed in the temporal and outer central regions of the
dataset, with less signal on the midline (see Fig. 3). This
pattern of activation led us to believe we are seeing the
signature of a deeper dipole. Inasmuch as MEG imaging
detects current dipoles, superficial dipoles often appear in
magnetometer traces as a peak to one side of the dipole and a

Fig. 1. Schematic of one trial from the gambling paradigm. Subjects view
their ante for two seconds, have up to two seconds to respond, view the
outcome for two seconds, and the fixation for three seconds. The area shaded
in grey represents the 1300 ms surrounding the button press indicating a
choice (500 ms prior and 800 ms following). This was the portion of the
dataset which was analyzed in this study.

Fig. 2. Selected magnetometer channels from a single subject, both without
and with exSSS processing. Note the visible peaks at 160 and 250 ms
in the processed channels, neither of which were noticably present in the
unprocessed data.

trough on the other. Seeing a peak appear on one hemisphere
and a trough on the other suggests that we are seeing a dipole
field pattern where the dipole is located close to the center
of the brain.

To test whether the difference between the processed and
unprocessed datasets is statistically significant, an F-test was
conducted between the processed and unprocessed traces
from dataset on a per-sensor basis. Significance in this test
would imply that the information extracted using the exSSS
algorithm was not visible in the unprocessed dataset. Of the
306 MEG magnetometers and gradiometers, over 90% were
significantly different (p < 0.001). Of the remaining 10%,
almost all were sensors located along the midline of the
brain, where signal was weakest (see Fig. 3). This supports
our hypothesis that data that was previously invisible has
been extracted from this dataset using the exSSS method.

Note that there are two signals present in Fig. 3; a broad,
tall peak/trough present bilaterally in the temporal regions,
and a smaller, sharper peak present near the parietal/occipital
border. The sharper peak occurs at approximately 130 ms
after the onset of the feedback screen, suggesting that it
may be an artifact of visual activity related to viewing
and processing feedback information, and not related to the
deeper signal which peaks approx 140 ms later, as described
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Fig. 3. A subset of the magnetometers from another subject. Note the
presence of bilateral large signal shifts in the temporal regions;

above. Why such a visual signal would exist in differenced
data, indicating a differentially strong visual signal during
“correct” relative to “incorrect” trials, is unknown.

III. DISCUSSION

In this paper, we have described the application MEG and
a novel signal processing technique (exSSS) to the problem
of full-brain high-resolution temporal imaging of functional
neural activity during human rewards processing. The results
support the previous findings in the literature in demon-
strating that the striatum is differentially activated during
“correct” trials relative to “incorrect” trials. Addtionally, we
have shown in the human model that there are likely two
separate timpoints at which the deeper regions are activated,
separated by 50 ms. These findings have previously been
found in the rat model, and are suggestive of a recurrent
network within the basal ganglia. This study did not utilize
localization methods on the data; future studies should ex-
amine whether the activation patterns arising from localized
data support the finding of a bimodal activity pattern.

More generally, these results suggest that through a com-
bination of MEG and exSSS we can extract deep activity
from an MEG dataset across subjects. As can be seen from
the findings presented here, patterns previously uncovered
using fMRI may likely contain details only visible using
high-temporal imaging modalities such as MEG. There are
many potential uses for this type of tool, but one particularly
interesting use would be the application of inverse methods
on the filtered dataset with the intent of extracting neural
time courses for experimentally activated regions of interest.
These regions could then be compared using a variety of
time series analysis methods, which could shed significant
light on the nature of network-level neural interactions.
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