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Abstract— In this study, we developed numerical methods for
investigating the sources of epileptic activity from intracranial
EEG recordings acquired from intracranial subdural electrodes
(iEEG) in patients undergoing pre-surgical evaluation at the
epilepsy center of the Mayo Clinic (Rochester, MN). The data
were analyzed using independent component analysis (ICA),
which identifies and isolates maximally independent signal
components in multi-channel recordings. A realistic individual
head model was constructed for a patient undergoing pre-
surgical evaluation. Structural models of gray matter, white
matter, CSF, skull, and scalp were extracted from pre-surgical
MR and post-surgical CT images. The electromagnetic source
localization forward problem was solved using the Boundary
Element Method (BEM). Source localization was performed
using the Sparse Bayesian Learning (SBL) algorithm. The
multiscale patch-basis source space constructed for this purpose
includes a large number of dipole elements on the cortical
layer oriented perpendicular to the local cortical surface.
These source dipoles are combined into overlapping multi-
scalepatches. Using this approach, we were able to detect seizure
activity on sulcal walls and on gyrus of the cortex.

I. INTRODUCTION

Epilepsy is one of the most common neurological dis-

orders, affecting 50 million people worldwide. In approxi-

mately 30% of these patients, seizures cannot be controlled

by any available medical therapy. About 4.5% of all patients

with epilepsy are thus potential candidates for surgical treat-

ment. Epilepsy surgery has a good chance of success in this

patient group, but only if the brain region generating seizures

can be accurately localized and then safely removed. For

this purpose, in selected cases, recordings are acquired using

subdural and/or depth electrode (intracranial) pre-surgical

evaluation. The aim of this study was to model and analyze

the dynamics of epilepsy using intracranial EEG recordings

recorded by Dr. Worrell at the Mayo Clinic. We combined

independent component analysis (ICA) with source localiza-

tion of the identified signal components. For this purpose, a

realistic boundary element method (BEM) head model of a

patient was created. The inverse problem was solved using a

sparse bayesian learning (SBL) algorithm using a multi-scale

cortical patch-basis. Selected ICA components of recorded

seizure activity were localized. Sulcal and gyral cortical

patch sources were identified for these signal components,

respectively.
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A. Forward Problem

In electromagnetic source imaging, head models are built

to represent the geometry and conductivity of the head tissues

(e.g., the brain, skull, CSF, and scalp). Then, potentials

arising on the sensor locations are determined from each

given model source distribution (constituting a solution of

the forward problem). Inverse source localization is then

performed by finding a source distribution whose forward

solution best matches a set of measurements at the elec-

trodes. Successful source imaging from EEG measurements

of epileptic activity involves three main challenges: (1) A

realistic, subject specific head model must be constructed,

(2) epileptiform discharges must be identified and isolated

in the EEG background signal, and (3) their sources must be

localized taking physiological constraints into account.

The accuracy of the head model used in electrical source

imaging affects the accuracy of the source localization sig-

nificantly. A spherical head model may estimate the location

of the seizure onset with up to 2–3 cm error [1]. Also,

the influence of post-surgical defects in the skull and the

influence on forward field computation of the plastic sheet

in which the subdural electrodes are embedded cannot be

neglected [2]. When realistic head models are feasible, the

forward problem should be solved numerically. Here, we

used an accurate Boundary Element Method (BEM) imple-

mentation by Akalin-Acar and Gencer [3] that allows the use

of intersecting tissue boundaries (eyes, holes in the skull etc.)

and can handle models with multiple compartments inside

the skull [4].

Another factor that affects the epilepsy source localization

is the identification and isolation of epilepsy related sources

from the EEG background signal. Ebersole and Hawes-

Ebersole have shown that much of the epileptic spike activity

recorded by subdural electrodes is not visible on the scalp

[5]. Several researchers investigated the size of the cortical

source area that must be synchronously active for the spikes

to be visible on the scalp EEG recordings. While smaller

cortical areas create signals that can be measured from

the scalp, the amplitude may not be high enough to be

recognizable as producing spikes in the scalp EEG activity,

which includes the activities of other cortical sources as well

as non-brain potentials arising from muscle activity, cardiac

activity, eye movements, etc.. In this study, we use Infomax

Independent Component Analysis (ICA) as developed by

Makeig et al [6] to remove eye and muscle activity artifacts

and also to identify and separate functionally independent

components. So far only a few studies have applied ICA

to EEG data recorded from epilepsy patients. These papers
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have demonstrated that ICA may aid detection of epileptic

seizure activity [7], [8]. For example, in an analysis of 24

EEG seizures from medial temporal lobe epilepsy patients,

successful lateralization of spike activity rose from 75% to

96% after applying ICA [9].

B. Inverse Problem

The EEG source localization problem is inherently under-

determined. The solution of the inverse problem must take

into account physiological constraints and, if possible, prior

information about the measurements. Inverse problem algo-

rithms can be considered to fall into two general categories.

‘Equivalent current dipole’ (parametric) methods assume the

potentials can be approximated by one or more sources

with dipolar far-field projections. ‘Distributed source’ (linear

inverse) methods assume that potentials are generated by a

large number of small dipolar sources distributed within the

brain or on the cortical surface [10]. While the parametric

methods search for a fixed number of dipolar sources, the

linear inverse methods use a very large number of dipoles

placed within the brain volume, and try to determine the

activity of these sources. Since there are a very large number

of possible solutions, additional constraints must be included

in the solver to find a uniquely acceptable solution. Various

approaches have been suggested for this purpose. Baillet et

al formulated a Bayesian approach using cortical patches

corresponding to groups of contiguous source voxels that are

simultaneously active [11]. Other source models have been

suggested to be more physiologically accurate, such as multi-

scale cortical patches with fixed source intensities [12]. Wipf

et al present an overview of different methods and a unified

bayesian framework for this problem [13].

In this work, ICA is applied to 78-channel intracranial

EEG data. The forward problem is solved using a realistic

BEM head model, and the inverse problem using the sparse

bayesian learning (SBL) algorithm [14]. The dictionary (lead

field matrix) for the SBL solver is constructed from overlap-

ping Gaussian patches [15]. Below, methods for generating

realistic head models are explained and the results of using

the model generated for this study are given. In the third

section, the use of ICA for source localization is discussed.

II. HEAD MODELING OF AN OPEN SKULL

Some patients who will undergo epilepsy surgery first un-

dergo a pre-surgical procedure in which a part of their skull is

removed and areas around the suspected epileptogenic zone

are recorded and stimulated to determine whether the seizure

generating region is localized and suitable for recision, e.g.

not within or too close to eloquent cortex. Before this

pre-surgical procedure, magnetic resonance (MR) images

are acquired. After the surgery, to locate the intracranial

electrodes CT images of the head are acquired. Our earlier

study investigated forward and inverse problem solutions on

an epilepsy patient undergoing this pre-surgical procedure

[16]. For this purpose an accurate numerical head model of

the patient had to be generated. The head model generated

by co-registering and segmenting pre-surgical MR and post-

surgical CT images is shown in Figure 1. In the previous

study, this model was used in forward and inverse problem

calculations to localize independent sources of simultane-

ously recorded intracranial iEEG and scalp sEEG. We also

presented simulation results and showed that it is crucial to

use an accurate head model for correct source localization.

(a) (b)

(c)

Fig. 1. BEM model of the scalp, skull and the plastic sheet, represented by
10,000, 30,000, and 7,000 faces, respectively. (a) Skull and electrode sheet
faces, (b) scalp, skull and sheet faces, (c) plastic sheet model of the plastic
grid and strip electrode matrices.

In this study we used the same head model and focused

on solving the inverse problem, using ICA to separate the

EEG data into independent components and SBL for source

localization with multi-scale cortical patches as the source

model.

III. ICA AND SOURCE LOCALIZATION

This section describes Independent Component Analysis

of the iEEG recordings. Source localization is performed for

selected components using the realistic BEM head model and

SBL with a patch-based dictionary.

A. Independent Component Analysis

Infomax Independent Component Analysis (ICA) has

proven to be an effective method for removing eye and

muscle activity artifacts from scalp EEG data, thus increasing

the potential signal-to-noise ratio of sources in subsequent

analyses [6]. ICA can also identify and separate functionally

independent brain-based components, which for normal scalp

EEG prove to be most often associated with scalp maps

matching the projection of a single equivalent current dipole

[17].

In this work, fifteen minutes of 78-channel subdural iEEG

data (Figure 2) from an epilepsy patient including two seizure

periods were decomposed by extended infomax ICA ([6])

into 78 maximally independent component (IC) processes.

ICA decomposition returned a vector of weights giving the

relative strength and polarity of the projection of each IC

source process to each of the electrodes, and an ‘activation’
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time series giving the time course of activity of each IC

process during the data time period. Figure 3 shows maps of

the projection patterns of two IC processes to the patient’s

cortical surface in (a) and (b), and to the subdural electrode

grids in (c) and (d). The patient’s cortical model was de-

rived from the patient MR head image by using Freesurfer

(http://surfer.nmr.mgh.harvard.edu/).

These two components were chosen because they exhibit

spatially orthogonal activity patterns. The IC shown in Figure

3 (a) and (c) projects to a small number of adjacent electrodes

with the same polarity, thus most likely representing a gyral

source. The IC on Figure 3 (b) and (d), on the other hand,

appears to be a sulcal source projecting to two separate

pools of adjacent electrodes with opposite polarities. The

Fig. 2. CT image of the implanted grid electrodes. The two grids (6 ×
8, 4× 6) and one medial strip (1× 8) implanted in the patient for clinical
monitoring purposes.

(a) (b)

(c) (d)

Fig. 3. Potential maps of two IC processes projected on the brain (a) and
(b), and on the intracranial electrodes (c) and (d). Warm-color potentials
represent positive values and cool colors, negative values (green represents
0). Multiplying these maps by the (two-sided) IC time courses gives the
activity at each channel associated with the IC source.

results of ICA decomposition applied to these and similar

data force a reinterpretation of the nature of iEEG signals.

In both clinical and research practice, it is nearly universally

assumed that proximal signal sources must dominate signals

received by electrodes placed on or in the brain surface,

despite the potential influences of volume-conducted poten-

tials from all parts of the brain on each electrode. That is,

it is currently most often assumed that each iEEG channel

signal may be considered to be a wholly locally generated

signal independent of other more distal source activities.

ICA decomposition, by removing or minimizing the presence

of volume conducted signal summation at the electrodes,

demonstrates that each recorded iEEG signal is in fact the

sum of a number of more proximal and more distal source

processes. For cortical grid electrodes, the percent variance

accounted for by the most strongly contributing single (and

typically proximal) IC source ranges in our data between

about 20% and 80%. In particular, the two IC sources in

Figure 3 account for at most 47% (left) and 22% (right) of

channel variance at the respective channels to which each

projects most strongly.

We generated a realistic cortical source space including

a large number of dipole elements oriented perpendicular to

the local cortical surface from subject MR head images using

tessellated FreeSurfer gray and white matter surfaces. To

create a multi-scale cortical patch dictionary on this surface,

we selected seed points (single voxel dipoles), then extended

each patch conformally to a set of gaussian-tapered patches

in three scales with areas in the range 50-200 mm
2 [15].

Figure 4 shows same gaussian patches at three different size

scales. For our inverse problem analysis, we calculated the

forward problem for 80,130 dipoles and generated a lead

field matrix for a dictionary of 240,390 patches.

B. Sparse patch-based inverse problem solution

We solved the EEG inverse problem by identifying cortical

regions responsible for generating independent EEG compo-

nents defined by a maximally sparse collection patch basis

elements. For this purpose, we applied a sparse Bayesian

learning (SBL) based method [14], a Bayesian inverse prob-

lem algorithm that finds sparse solutions within the provided

lead field matrix (or dictionary). If the columns of the lead

field matrix are generated from cortical patches, then these

patches will form the overcomplete basis used by the SBL

algorithm, and the resulting source image will consist of a

weighted mixture of sparse cortical patches.

To generate the patches, we first generated a realistic corti-

cal source space. The source space consists of a large number

of dipole elements oriented perpendicular to the local cortical

surface acquired from subject MR head images. Here, the

tessellated gray and white matter surfaces from Freesurfer

were used to compute the locations and orientations of these

dipoles.

To create a multi-scale cortical patch basis on this surface,

we selected a spatially uniform set of seed points (single

voxel dipoles), then extended each patch conformally to a set

of gaussian-tapered patches of three size scales with areas in

the range 50-200 mm
2 [15]. Figure 4 shows same gaussian

patch at three different size scales. For our inverse problem

analysis, we calculated the forward problem for 80,130

dipoles and generated a lead field matrix for a dictionary

of 240,390 patches.

Figure 5 shows the cortical activity of IC maps shown

in Figure 3. The SBL algorithm managed to identify sparse

mixtures of overlapping patches that accurately describe both
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(a) (b)

(c)

Fig. 4. Three Gaussian patches in different scales with radius (a) 10 mm,
(b) 6 mm, and (c) 3 mm.

these components. It can be seen that the source in Figure 5

(a) is a gyral source, whereas (b) is a sulcal source, consistent

with the ICA component projections shown in Figure 3.

(a) (b)

Fig. 5. Inverse problem results for the two ICs shown in Figure 3. Red and
blue (not seen here) indicate activity with opposite signs, green indicates
no activity

IV. CONCLUSIONS AND FUTURE WORK

Here, we analyzed intracranial EEG recordings using ICA

and numerical forward and inverse methods, and presented

preliminary results of patch-based source localization of

seizure data sources in an epilepsy patient.

This may be the first time that volume-conducted distal

and near-field proximal portions of data recorded from the

human cortex have been separated and used to localize and

visualize iEEG sources projecting to the cortical electrode

grid. We believe these results constitute good preliminary ev-

idence to support our hypothesis that we can use intracranial

EEG recordings to image cortical sources, including those

located within sulcal folds.

As a next step, the generation and propagation of seizures

will be investigated using this model including non-stationary

extensions. We will also investigate state transitions between

ictal and interictal EEG data by applying multiple- mixture

ICA decomposition [18]. This will provide information about

the ability of ICA to isolate seizure components. Simultane-

ously acquired resting scalp and intracranial EEG data is

also available for this patient. Source localization will be

performed using scalp and intracranial EEG data and the

relationship between noninvasive and invasive recordings of

their electrical brain activity will be explored. This research

could provide valuable insights into the dynamics of epilepsy

and the electrophysiology of the human brain.
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