
 

 
Abstract—Although the mechanomyogram (MMG) has been 

demonstrated as a viable representation of muscle activity, its 
potential as a multifunction (>2) control signal has not yet been 
investigated. This study investigates the discriminability of 
multiple hand motions using multichannel forearm MMG. 
With nine able-bodied participants, MMG signals from six sites 
could be differentiated among eight classes of forearm muscle 
activity with a mean accuracy of 93±9% using 15 features 
selected by a genetic algorithm and classified by a linear 
discriminant analysis classifier. These results suggest that, with 
additional research, MMG may indeed become a usable control 
signal for multifunction access devices. 

Index Terms— Mechanomyogram, access pathway, assistive 
devices, control signal, Fisher ratio, genetic algorithm 

I. INTRODUCTION 
Body-machine interface technologies enable individuals 
with physical disabilities to interact with their environment 
and regain some of the independence they have lost due to 
their disability. In these technologies, an individual mediates 
and controls a function of their access device by conscious 
control of physiological signals, such as brain activity or 
muscle activity. In this study, we investigate the potential of 
a multifunction muscle-interface that is controlled by 
mechanomyogram signals from forearm muscles.  

Contracting muscles emit low frequency vibrations that 
can be measured by microphones or accelerometers on the 
surface of the skin. The mechanomyogram (MMG) is the 
superficial measurement of these vibrations. MMG is 
generated from gross lateral movement of the muscle at the 
initiation of a contraction, smaller subsequent lateral 
oscillations at the resonant frequency of the muscle, and 
dimensional changes of active muscle fibers [1].  

Much of the work on muscle-interfaces has focussed on 
electromyogram(EMG)-based control of upper-limb 
prostheses [2], telephone interfaces [3] and computer 
interfaces[4]. In comparison to EMG, MMG has been 

 
 
 
 

 
 
 
 
Figure 1: Block diagram of steps in the MMG pattern-recognition procedure 

 

understudied as a control signal. However, MMG, may have 
several advantages over EMG: it is not influenced by skin 
impedance changes, it is less sensitive to precise placement 
of sensors on the skin surface [1], the RMS power is high 
even at low contractions levels due to asynchronous firing of 
active motor units [5], and when compared to EMG, MMG 
provides a better estimation of the motor-unit activation 
strategy [6].  

Since MMG provides information about the number and 
firing rates of recruited motor units during voluntary 
isometric contraction [7], it is expected that patterns of 
muscle activity will be reflected as discernable patterns in 
MMG signals.  A pattern-recognition approach was 
therefore adopted to differentiate among MMG signals 
originating from multiple classes of muscle activity.  

The success of the pattern recognition system is 
dependent on a signal representation that contains enough 
information to accurately discriminate among the forearm 
muscle activation patterns, yet is small enough to ensure 
processing speed and generalization. We propose the 
following stages in designing the MMG pattern-recognition 
system: representing the MMG signal as a feature vector; 
identifying individual discriminatory features by Fisher’s 
ratio analysis [8]; selecting jointly discriminatory features 
using a Genetic Algorithm (GA) with classification accuracy 
as the criterion function, and evaluating the reduced feature 
set with a linear classifier.  These steps are illustrated in 
Figure 1. The classifier’s decision could subsequently be 
used as input to a multifunction controller for an access 
device. 

II. METHODS 
A. Data Collection 

Nine healthy individuals (4 male, 5 female) aged 21±1 
years with no previous history of musculoskeletal illness 
provided written consent to participate in the study. 
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Participants were seated on a chair fitted with a custom 
arm-rest which supported the forearm at the wrist and 
elbow. Six MMG sensors, manufactured according to the 
method of Silva et al. [9], were affixed to the participants’ 
dominant forearm over extrinsic hand muscles. The muscles 
monitored by the sensors were: the pronator teres, flexor 
carpi radialis, flexor carpi ulnaris, extensor digitorum 
communis, extensor carpi radialis longus and extensor carpi 
ulnaris. Each sensor was individually affixed with a small 
velcro strap. A custom LabView graphical user interface 
was used to start data acquisition and visually cue the 
participants to perform eight hand motions: hand open, hand 
close, wrist flexion, wrist extension, pronation, supination, 
adduction, and abduction. MMG data from the six muscle 
sites were sampled at a rate of 1KHz.  

Participants performed 80 repetitions of each of the eight 
motions in a pre-defined order. All movements originated 
from the resting position. Each motion was comprised of the 
full range of motion from the resting position to the target 
position, followed by 3 seconds of the hand being held in 
the target position. Participants were instructed to return 
their hand to a resting position for 3 seconds before being 
prompted to perform the next hand motion. To ensure that 
muscle fatigue was not an issue, participants were given 
adequate time to rest in between trials. 

 

B. Signal pre-processing and feature measurement 
The continuous streams of recorded MMG signals were 

subsequently spliced into individual 3-second recordings, 
each corresponding to one of the eight hand movements or 
rest. To attenuate the effects of movement, the signals were 
band-pass filtered with a cut-off frequency range of 5-
100Hz [5].   

The first 1000ms of each MMG signal was used for 
feature extraction. The time-domain signals were 
represented by a feature vector ADorig xN, where Dorig is the 
initial feature dimensionality and N is the number of 
contraction samples. We measured a comprehensive set of 
60 time-domain, frequency-domain and time-frequency 
domain features from each MMG channel. These features 
included RMS measures, peak and median frequencies, 
relative power in frequency bands, auto-regressive 
coefficients, moments about the mean, and wavelet 
coefficients. The features were concatenated for all six 
channels, yielding a feature vector ADorig xN (Dorig=360).   

 

C. Feature pre-selection by Fisher Ratio Analysis 
The initial feature vector ADorig xN consists of 

approximately N=640 samples (80 samples x 8 classes) of 
the Dorig=360 features (60 features x 6 channels). The first 
step in feature selection was to reduce the dimensionality by 
discarding non-discriminatory features.  

Each feature in the feature vector was ranked according to 
its discriminatory power by evaluating its Fisher score 

JF(Ad), where 1≤ d≤ 360. The Fisher score is a ratio of the 
between-class scatter SBd to the within-class scatter SWd. For 
a multiclass problem, the Fisher criterion for the for the dth 
feature vector Ad is given by, 
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where, pi is the priori probability of class i, and mi,d and Si,d  
are the mean and variance of feature d for class i, 
respectively [8].   

For each participant, the Fisher score of each of the 360 
features was computed, and the 100 linearly-independent 
features with the highest scores were retained. Combinations 
of features from this reduced feature set were used in the 
next step of feature selection.  

 

D. Feature selection by the Genetic Algorithm 
Selecting the optimal feature dimensionality is of 

paramount importance in pattern-recognition since it 
determines classifier accuracy and generalization. Since the 
size of the training set is small i.e. 64 samples per class 
when using 80% of the 80 hand movement samples, the 
upper limit on feature dimensionally should be D=14 
according to [10], and may exceed D=20 if the features are 
correlated [11]. In this study, dimensionality was varied 
such that 4≤ D≤ 15, where D is an integer.  

The genetic algorithm is an evolution-based optimization 
procedure where a solution, or chromosome, is represented 
as a finite sequence of 0’s and 1’s. Chromosomes are 
allowed to crossover and mutate. A finite set of solutions, 
the population, is evaluated by the optimization criterion 
function. A proportion of the best chromosomes are selected 
to breed a new population. The optimization process is 
carried out in iterations, called generations. In each 
generation, the new population is created through crossover, 
mutated and evaluated.  In dimensionality reduction, the 
chromosome represents a subset of features, where the kth bit 
denotes the presence or absence of the kth feature. Each 
chromosome in the population is evaluated according to its 
classification accuracy. For a detailed description on GAs 
for feature selection, please refer to [12]. 

In this study, a 100-dimensional feature vector, previously 
reduced by Fisher analysis, is further reduced to D-
dimensional feature sets (4≤ D≤ 15). The solutions for each 
dimensionality were found from GA searches comprising of 
100 generations, each with a population of 1000 
chromosomes, a 50% cross-over rate, and a 30% mutation 
rate. The optimization criterion here was the average eight-
class classification rate of the selected features on the 
training data using five-fold cross validation with a linear 
discriminant analysis (LDA) classifier. For each 
dimensionality, the search consisted of six runs of the GA 
for randomly selected initial populations. The best feature-
set over all the runs was selected for subsequent evaluation 
of the MMG classifier.   

2952



 

E. Error estimation 
Fisher’s LDA classifier was employed for performance 

evaluation since it is simple to train and has proved to be 
reliable even for a small number of training samples if the 
number of features is not too large [10]. Pattern recognition 
performance was evaluated using five-fold cross-validation. 
For each participant, the feature-set suggested by the GA 
was used to train and test the LDA classifiers offline.  

III. RESULTS   
Figure 2 is an example of a typical MMG signal recorded 

from sensors on the surface of a forearm showing the 
transient and steady-state components accompanying a hand 
movement.  The transient signal lasts for approximately 
600ms. MMG signals spliced at 1000ms from the initiation 
of contraction were classified, and the accuracies for 
discriminating among eight classes of forearm muscle 
activity were evaluated. Table 1 shows the classification 
accuracies for each participant, reported as the average 
accuracy over the five folds used in cross-validation. The 
highest mean accuracy across all participants was 93±9% 
when D=15.   Participant #1 consistently produced the best 
results, with average accuracies up to 97±1%.  In contrast, 
the classification accuracies for Participant #2 and #9 were 
below 90% regardless of feature dimensionality.  

Accuracies initially increase by at least 2% for each 
increment in dimension, and the advantage of increased 
dimensionality eventually plateaus, showing no significant 
differences for 9≤ D≤ 15 (p=0.05).  On comparing the 
individually selected feature set recommended by the GA 
for each participant, it was observed that some features, such 
as the cepstral coefficients [13], were common to most 
participants. Classification accuracies of 88±7% were 
attained for the 8-class problem (D=15) using cepstral 
features alone. 

 
 

Table 1: Classification accuracies 

 
Figure 2. Typical MMG from a forearm muscle during hand movement. 

IV. DISCUSSION 

A. Features 
While the feature-sets were not common among 

participants, the GA was useful in suggesting common 
discriminatory features that may be useful when training 
time is an issue. Many of the GA-selected features stemmed 
from cepstral coefficients, which have been important for 
speech and speaker recognition applications [13]. The 
frequent inclusion of these features in the GA-selected 
feature set may indicate differences in the spectral patterns 
of MMG signals generated during different classes of 
forearm muscle activity.     

B. Feature Dimensionality 
For a finite sample size, classification accuracy is known 

to increase to a maximum and subsequently decline as 
dimensionality increases [14]. Lower dimensionality is 
associated with greater generalization, and hence greater 
credibility. As dimensionality is increased, classification 
accuracy increases sharply until D=6 at which point there is 
a gradual increase until D=9. For D>9, the increase in 
accuracy is insignificant until D=15. This suggests that at 
least 10 features are required for good separability among 
the classes. Since the peaking phenomenon was not 
observed, the maximum classification accuracy may be 
attained for D>15. However, the increase in dimensionality 
may not be warranted given the small training sample size.  
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C.   Classifier 
At each generation of the GA, the classifier had to be 

trained and evaluated at all points in the population. We 
selected thee LDA classifier since it has low training and 
evaluation complexity ( )( 2 NDΟ ). Since the GA employs 
an LDA classifier in its feedback loop, there is a greater 
tendency for the GA to select features that are linearly 
separable. However, the classes of hand-function in the GA-
selected feature space may only be partially linearly 
separable. This may be the cause of lower classification 
accuracies reported for Participants #2 and 9. The use of 
non-linear classifiers, such as radial basis networks, may 
provide better accuracies in some cases.  
 

D. MMG signal duration 
The MMG signal itself is a low frequency signal, with the 

dominant frequency lying below 20Hz [15]. It may therefore 
be unreasonable to expect small durations of the signal (less 
than 500ms) to yield reliable classification results. The one-
second of data required for classification may lead to 
response delays that may not be suitable for applications 
such as prosthesis control. Since there is a trade-off between 
response time and classification accuracy, the classifier 
design should be customized to the speed and accuracy 
requirements of the user and the application. An individual 
without a reliable access pathway may be tolerant to 
response delays greater than 1s when controlling their 
communication aid or environment control unit.  
 

E. Limitations and future work 
Since MMG is affected by motion artefact, its 

measurement is only meaningful in well-controlled 
environments. In this study, although the measurement sites 
were stationary, a sensor comprising of a coupled 
microphone-accelerometer pair was used to record MMG, 
and could provide a method for source separation in the 
presence of extraneous movement [16].  

While trials on able-bodied participants are common in 
determining the feasibility of access solutions, able-bodied 
performance may not always be relevant to the performance 
of the severely disabled. Concerns for the target population 
include the ability to produce multiple activation patterns, 
the minimum muscle force required for discernable MMG 
signals, and the ability of the data recorder to verify the 
integrity of the training-set when the muscle activation 
pattern does not accompany observable physical movement.  

The proposed pattern-recognition paradigm requires 
further development, such as real-time data acquisition, 
segmentation, feature extraction and classification, before it 
can be considered for practical use. 

V. CONCLUSION 
The results of this study verify the hypothesis that MMG 

signals reflect multiple distinctive patterns of muscle 
activity.  Multi-site MMG signals generated during multiple 
forearm activation patterns are discernable with high 
accuracy using simple classifiers and prudently selected 
features. This suggests that MMG could potentially be used 
as an alternative control signal to EMG where the latter is 
contraindicated. 
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