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Abstract—In this work, a previously developed model, which
maps joint kinematic data and estimated muscle activation
levels to net elbow joint torque, is trained with 4 groups of
datasets in order to improve force estimation accuracy and
gain insight into muscle behaviour. The training datasets are
defined such that surface electromyogram (EMG) and force
data are grouped within individual trials, across trials, within
force levels and across force levels, and model performance
is assessed. Average evaluation error ranged between 5% and
15%, with the lowest error observed for models trained with
datasets grouped within separate force levels. Model error is
further reduced when training datasets are grouped across data
collection trials. Therefore, more accurate estimation of elbow
joint behaviour can be accomplished by taking into account the
functional requirements of muscle, and allowing for separate
models to be developed accordingly.

I. INTRODUCTION

The force generated by a muscle depends on muscle

activation dynamics - the excitation signal and motor unit

recruitment in muscle, and muscle contraction dynamics -

the mechanical properties of musculotendon units dictated

by length and velocity relationships [1]. Muscle activation is

defined as the neural input for a desired muscle force and is

commonly estimated from recorded electromyogram (EMG).

EMG amplitude is observed to increase when more force is

generated in a muscle, however it has been noted that models

describing the force produced in muscle do not scale linearly

with muscle activation level [2], [3].

The magnitude of force generated by a particular muscle is

modified by varying the number (recruitment) and frequency

with which motor units are instructed to contract [4]. It has

also been shown that the maximal force output of muscle shifts

towards longer muscle lengths in submaximal contractions [5],

[6], [7]. As the functional requirements of muscle change,

so do the models that would be used to describe the joint

dynamics. [8]

Many researchers have attempted to develop models to

predict muscle force from an estimate of muscle activation

based on measured EMG using non-linear identification meth-

ods such as neural networks [9] or polynomial fitting [10].

However, in general, these models do not reflect the nature

of joint motion as they are not derived from a physiological
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Fig. 1. Proposed force observer. Dashed lines represent signals used for
training.

basis. In previous work, a physiologically-based model was

developed using the Fast Orthogonal Search (FOS) method to

map joint kinematic data and muscle activation level, estimated

from surface EMG (sEMG), to net elbow torque (expressed as

force at the wrist) under isometric conditions [11]. Good per-

formance was achieved by this model, which gave estimation

errors of 10% [11]. The aim of the research reported here is to

tailor the training data to develop sEMG-Force models which

achieve a better representation of upper limb muscle behaviour

during submaximal isometric contractions at two output force

levels, and thereby obtain better force estimation accuracy.

II. EMG FORCE MAPPING USING FAST ORTHOGONAL

SEARCH

A. Fast Orthogonal Search (FOS)

Fast Orthogonal Search (FOS) is a nonlinear identifica-

tion method that approximates a system output y(n) with a

weighted sum of M linear or nonlinear basis functions pm(n)
and coefficient terms am and aims to minimize the mean

square error between the estimate and y(n) [12]. The FOS

model takes the form:

y(n) =
M
∑

m=1

ampm(n) + e(n) (1)

where am are coefficient terms, e(n) is the estimation error

and n is the discrete time sample index. The FOS method

searches through a number, N , of available candidate basis

functions, where N >> M and iteratively selects those

functions which contribute the greatest reduction in mean
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square error (MSE) between the model estimate and the actual

system output. A detailed description of the method can be

found in [13].

FOS models are generated using a designated training set as

shown in Figure 1, and evaluated in a leave-one-out manner,

where all datasets for the same data collection session with the

exception of the training set are used to evaluate the model.

Average estimation error was measured using percent relative

mean square error (%RMSE):

%RMSE =

∑n
i=1(Fwi − F̂wi)

2

∑n
i=1 F 2

wi

× 100 (2)

where Fwi is the measured force at the wrist and F̂wi is the

FOS model estimate of wrist force.

Previous research [13] used a pool of FOS candidate func-

tions composed of common mathematical terms, in order to

develop FOS models which accurately predicted the force at

the wrist during elbow flexion and extension. This method

was further improved in [11] to better reflect the neuromus-

cular behaviour by incorporating Hill-based muscle model

components into the pool of FOS candidate functions. Force

estimation error averaged at 10%, however there remains room

for improvement. The current work attempts to obtain more

accurate force estimation results using Hill-based FOS models,

by modifying the way in which FOS training sets are created.

It is hoped that better FOS models will be developed for

each subject by taking into account the differences in muscle

behaviour at different activation levels.

B. Elbow Joint Dynamics and Hill-muscle Model Develop-

ment

Elbow joint motion is a result of the contraction of el-

bow flexor muscles (the biceps brachii, brachioradialis and

brachialis) and elbow extensors (triceps brachii and anco-

neous) to create smooth joint rotation. The moment generated

by each muscle is a function of the muscle force and the

muscle moment arm. The net moment about the elbow, Melbow

can be calculated as the sum of individual moments generated

by each muscle, that is

Melbow =
I

∑

i=1

Fi · MAi = Fw · MAf (3)

where i represents an individual muscle, I is the number of

muscles acting on the joint, Fi is the force generated by

muscle i, MAi is the moment arm of muscle i, and the net

moment about the elbow can be calculated from the force

measured at the wrist Fw, using the length of the forearm as

the moment arm MAf . Using a Hill-muscle model [1], [14]

that is composed of a contractile element (CE), a series elastic

element (SE), and a parallel elastic element (PE) as shown in

Figure 2, individual muscle forces can be estimated using the

Fig. 2. A: Structure of the Hill muscle model adapted from [1]. B: Isometric
contractile element force F

CE and parallel elastic element force F
PE as a

function of muscle length. Note: the actual shape of F
CE is asymmetric.

following equations:

FCE = FSE (4)

Fmuscle = FCE + FPE (5)

FCE = F0 · fl · fv · a(t) (6)

Here the contractile force generated by the CE (FCE) can be

interpreted as the activity of the contractile units within the

muscle fibre and is equal to the force in the SE (FSE) (4).

The force generated by the PE component (FPE) is attributed

to the stretch resistance in inactive muscle. The PE only exerts

tension when the muscle is stretched beyond L0. Tension

builds up slowly at first, and then rapidly increases as shown

in Figure 2. The total muscle force Fmuscle equals the sum

of the forces in each of the two parallel sections of the model

(5). FCE can be expressed as the product of F0, the force-

length (fl) and force-velocity (fv) relationships, and muscle

activation a(t) [1] as in (6).

For an isometric contraction, the output FCE peaks at F0

at the optimal muscle length, L0, and for maximum muscle

activation, and is reduced to zero at lengths of approximately

0.5L0 and 1.5L0 [1], as shown in Figure 2. In this study, the

muscle length change contribution from the SE component was

neglected [15]. During isometric contractions, the shortening

velocity is zero and therefore fv in (6) was set to 1.

The Hill-based model used in this study includes esti-

mates for the FCE and FPE curves for the biceps brachii,

brachioradialis and triceps brachii muscles. These functions

were expressed in terms of joint angle rather than muscle

length, due to the relative ease of measuring external elbow

joint angle in-vivo. A relationship describing the change in

muscle length for the elbow flexors and extensors with respect

to elbow joint angle, presented by Lemay and Crago [16],

was used to express FCE and FPE curves as a function of

joint angle using a range of optimal joint angles spanning

20◦-120◦ in 10◦ intervals and using a constant term for

muscle moment arm. The mapped FCE and FPE curves

were then approximated using Gaussian functions and 2nd-

order polynomials, respectively. Details of model generation

are provided in [11].

C. Model Identification

The pool of N candidate functions (P ), from which the FOS

models are created, incorporates the Hill-based muscle model

estimates for FCE and FPE into functions which represent
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an expression of each muscle’s contribution to isometric elbow

moment at the wrist, that is

C =

{

FCE(θ0i, ϕvTi) ·
MAi

MAf
= F0i·fli(θ0i,ϕvT i)·ai(t)·MAi

MAf

FPE(θ0i) ·
MAi

MAf
= F P E(θ0i)·MAi

MAf

(7)

where i represents the specific muscle, and MAf is constant

for each subject as the measured length of the subject’s

forearm. Constant terms in the FCE and FPE equations, i.e.

F0i, MAf and MAi, were set equal to 1. This allows FOS to

choose coefficient values which tailor the model to best reflect

the physiology of the subject or the muscle activation level of

the contraction.

The force-length component of the FCE function depends

on the value chosen for the optimal joint angle θ0i in its

equation as well as a parameter (ϕvi) which describes the

shape of the Gaussian curve approximation. A total of 33 FCE

candidate functions were generated for each muscle, each

reflecting one of 11 optimal joint angles (20◦,30◦,. . . ,120◦)

and one of three values for ϕvi as described in [11], resulting

in a total of 99 functions included in the candidate pool.

Similarly, 11 FPE equations were generated for each muscle

for the 11 values of θ0i, resulting in a total of 33 FPE

functions included in the pool of candidates. Therefore, the

entire candidate pool included a total of N=132 functions.

Models were generated for each subject with a pre-

determined model size of 7 based on findings from Mobasser

et al. [13]. The FOS method is structured such that the

first function in the model is not chosen from the pool of

candidates, rather it is assigned a value of 1, with a coefficient

term to account for bias in the system. Subsequently, the

function which contributes the greatest error reduction to

the model is selected. This function is classified based on

the muscle it represents and the value of θ0i used in its

calculations. From then on, the pool of candidate functions

remaining for that muscle is limited to only those functions

with the same θ0i ± 10◦.

NC, WT Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 NC, AT Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Trial 1 A A A A A A Trial 1 A H G F E D 

Trial 2 B B B B B B Trial 2 B A H G F E 

Trial 3 C C C C C C Trial 3 C B A H G F 

Trial 4 D D D D D D Trial 4 D C B A H G 

Trial 5 E E E E E E Trial 5 E D C B A H 

Trial 6 F F F F F F Trial 6 F E D C B A 

Trial 7 G G G G G G Trial 7 G F E D C B 

Trial 8 H H H H H H Trial 8 H G F E D C 

               

C, WT Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 C, AT Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Trial 1 A A A A A A Trial 1 A D C B A D 

Trial 2 B B B B B B Trial 2 B A D C B A 

Trial 3 C C C C C C Trial 3 C B A D C B 

Trial 4 D D D D D D Trial 4 D C B A D C 

Trial 5 E E E E E E Trial 5 E H G F E H 

Trial 6 F F F F F F Trial 6 F E H G F E 

Trial 7 G G G G G G Trial 7 G F E H G F 

Trial 8 H H H H H H Trial 8 H G F E H G 

Fig. 4. Four groups of datasets used to train and evaluate FOS models

D. EMG Data Collection and Processing

III. EMG DATA COLLECTION AND PREPARATION

Experiments were conducted on a 1-Degree-of-freedom

(DOF) exoskeleton testbed that holds the shoulder and wrist

of each subject in a fixed position, and constrains flexion and

extension of the right arm to the horizontal plane, as shown in

Figure 3. A 6-DOF force/torque sensor was fixed to the wrist

brace and used to measure linear force at the wrist. Details

are described in [11].

Surface EMG data from the biceps brachii, brachioradialis

and triceps brachii muscles were collected from the right arm

of 10 subjects (4 male, 6 female) with a mean age of 25.

Subjects had no known neuromuscular deficits of the right

arm. The experimental protocol has been approved by the

Health Sciences Research Ethics Board, Queen’s University

and subjects gave informed consent prior to participating in

the study. Two Invenium Technologies active bipolar sEMG

electrode units were placed adjacent to each other and secured

over the belly of each of the three muscles. The sEMG data

were processed using a linear envelope and normalized to

a sustained 5Nm isometric contraction in both flexion and

extension, as in [11].

Subjects performed a series of 12 isometric contractions

(six in flexion and six in extension) at six joint angles (30◦,

45◦, 60◦, 75◦, 90◦, and 105◦), taking full arm extension as

an angle of 0◦. This series of six contractions was classified

as one trial. This procedure was repeated 8 times per data

collection session. Visual wrist force feedback was provided to

the subjects to aid in generating a desired wrist force. A target

wrist force level of 10N was used in the first four trials and a

target wrist force level of 20N for the remaining four trials in

each session. Two minutes of rest was enforced between trials

to prevent muscle fatigue. Data were collected in two or three

separate sessions on different days.

A. Creation of FOS Model Training Sets

Previous Hill-based FOS models [11] were trained using

one entire data record for 1 data collection trial, containing

not only six contractions in flexion and extension, but also

rest time between contractions and slight movements of the

subjects’ arms as they navigated from one test angle to another.
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TABLE I
EVALUATION %RMSE FOR FOS MODELS GENERATED AND EVALUATED

USING NC,WT DATASETS AND C,WT DATASETS CATEGORIZED FOR 10N
AND 20N

Evaluation %RMSE (SD)
Subject NC,WT C,WT C,WT

(10N) (20N)

M1 14.8(10.7) 18.9(16.1) 6.1(2.8)
M2 9.4(5.0) 8.5(2.3) 4.4(1.3)
M3 7.0(3.6) 6.4(2.5) 4.2(2.3)
M4 36.0(22.5) 31.0(22.0) 15.9(9.4)
F1 9.0(4.5) 6.4(1.5) 4.7(1.4)
F2 11.5(7.5) 11.2(5.6) 5.8(3.3)
F3 37.0(28.4) 17.0(10.1) 8.8(3.9)
F4 9.7(6.0) 5.7(2.3) 4.0(1.1)
F5 5.8(3.3) 6.5(4.2) 3.6(1.5)
F6 8.5(5.8) 3.2(0.8) 3.6(1.0)

Average 14.9 (9.7) 11.5 (6.7) 6.1 (2.8)

TABLE II
EVALUATION %RMSE FOR FOS MODELS GENERATED AND EVALUATED

USING NC,AT DATASETS AND C,AT DATASETS CATEGORIZED FOR 10N
AND 20N

Evaluation %RMSE (SD)
Subject NC,AT C,AT C,AT

(10N) (20N)

M1 11.0(5.3) 8.5(3.6) 5.1(1.9)
M2 7.4(3.0) 8.6(2.4) 3.9(0.7)
M3 5.8(2.4) 6.5(2.2) 4.2(2.1)
M4 26.3(15.0) 26.8(13.8) 11.7(5.9)
F1 7.7(3.5) 6.2(1.3) 4.5(1.0)
F2 10.2(5.2) 10.0(3.5) 4.7(1.5)
F3 22.6(11.7) 14.1(5.0) 8.4(2.9)
F4 8.7(5.4) 5.1(1.3) 3.9(0.9)
F5 5.5(2.0) 6.1(2.6) 3.4(0.9)
F6 8.4(5.3) 3.2(0.5) 3.6(1.0)

Average 11.4 (5.9) 9.5 (3.6) 5.3 (1.9)

To create more successful FOS training sets, each trial of data

for each subject containing six individual isometric contrac-

tions in flexion and extension was segmented into six distinct

components, where each component or set included data for

one active isometric contraction in flexion and extension.

These contraction sets were then re-arranged in one of four

ways to create new groups of FOS training sets.

Groups of datasets were either categorized (C) or not-

categorized (NC) based on the output force level (10N or

20N). Within both C and NC groups, the extracted data

segments were grouped within trials (WT) or across trials

(AT) in a diagonal pattern. This resulted in four data groups -

C,WT; C,AT; NC,WT; NC,AT - as shown in Figure 4, where

the letters A-H associated with each contraction set and each

trial indicate which data is included in each training set. In the

C groups, the FOS models were trained and evaluated using

datasets collected at the same output force level, whereas in

the NC groups, the models were trained and evaluated using

data collected at both force levels.

IV. FOS MODEL PERFORMANCE

FOS models were trained and evaluated using datasets

grouped based on the C,WT; C,AT; NC,WT and NC,AT data

groups previously described. This procedure was performed

for each subject using data from either two or three data

collection sessions.

The estimation error (%RMSE) associated with each model

was calculated and averaged for all models within a data

collection session for each subject to give a mean %RMSE

(RMSEAV E). These RMSEAV E values were then averaged

again across all data collection sessions for one subject and

are provided in Tables I and II. The success of the Hill-

based FOS models to predict wrist force was consistent across

subjects and sessions, with average RMSEAV E across all

subjects ranging between 5-15% as shown in Tables I and II.

Wilcoxon signed-rank tests for paired samples were performed

to compare model performance using the four data grouping

methods with a significance level set at (p < 0.05).

Evaluation %RMSE for all four data groups was the largest

at 15% for models trained and evaluated with NC,WT datasets.

Estimation error was improved with both data diagonalization

(NC,AT) and with categorization (C,WT and C,AT).

Models trained using NC,WT were developed to model

a series of isometric contractions at one output force level,

however more than half of the evaluations were performed

for datasets with contractions at a different muscle activation

level. At 10N and 20N, the muscle has different functional

behaviour. As a result, one model cannot provide a good

approximation. Therefore, elbow muscles may be modeled for

a variety of force levels or activities. Not surprisingly, a dra-

matic improvement in evaluation error (both the %RMSE and

SD) was observed for C,WT(10N) and C,WT(20N) models

when compared to the NC,WT models. Average RMSEAV E

across all subjects dropped from 14.1% to 11.5% and 6.1% for

the C,WT(10N) and C,WT(20N) models respectively. Paired

comparisons were performed between the RMSEAV E for

all subjects using NC,WT and for both C,WT(10N) and

C,WT(20N) and a significant reduction in model error as well

as a reduction in standard deviation was observed for both

comparisons.

It is also interesting to note the reduction in model er-

ror and standard deviation between the C,WT(20N) and the

C,WT(10N) models. A paired comparison confirmed that this

reduction was statistically significant (p < 0.05). Explanation

for this lower %RMSE can be attributed to a number of factors:

The sEMG data contained in the 20N contractions is richer due

to the increased recruitment and firing frequency of motor

units in the upper-limb muscles for stronger contractions. It

is likely that the subjects were better able to control the

isometric contractions at 20N than 10N, resulting in more

consistent data. As well, increased signal attenuation due to

tissue filtering may have occurred for the 10N contractions,

resulting in poorer quality sEMG signals.

An improvement in model estimation error and standard

deviation was also observed between NC,WT and NC,AT
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models. A paired comparison revealed that RMSEAV E for

NC,AT (11.4%) was significantly lower than RMSEAV E for

NC,WT (14.9%). It is assumed that using the diagonalized

pattern of arranging individual contraction sets ensured that

each training set contained data from multiple trials, thus ad-

dressing issues with inter-trial variability, as well as including

contractions for both the 10N and 20N contraction level.

Finally, the best model performance was observed for

models generated using C,AT(10N) and C,AT(20N) datasets.

RMSEAV E was significantly lower for these two groupings

at 9.5% and 5.3% respectively, than the RMSEAV E found for

NC,AT (11.4%). As well, the standard deviations reported for

C,AT(10N) and C,AT(20N) are half of the values reported for

C,WT(10N) and C,WT(20N) and NC,AT models. To further

assess the validity of using segmented datasets, A paired

comparison between the C,WT(10N) and C,AT(10N) as well

as between the C,WT(20N) and C,AT(20N) models revealed a

significantly lower error for the segmented models (p < 0.05).

It appears that training FOS models using datasets that have

been arranged in a segmented pattern across multiple data

collection trials will produce models that are more accurate for

individual subjects. In addition, developing separate models

based on functional requirements of muscle (i.e. for specific

force output levels) also results in more accurate estimation

of elbow joint behaviour.

V. CONCLUSIONS

The goal of this research was to build upon previous

work [11], [13] using Fast Orthogonal Search, to obtain more

accurate estimates of isometric elbow joint torque expressed

as force at the wrist. Four methods of grouping the contraction

data were compared. The most dramatic improvements in

model evaluation error were observed when models were

trained and evaluated using datasets with similar muscle output

force levels; however, significant improvements were also

observed for models containing contraction data arranged in

a segmented pattern across multiple trials. Since models of

muscle properties have shown that force does not scale linearly

with muscle activation level, separating the FOS models by

target contraction force better represents the muscle behaviour

at various submaximal activation levels.

Expanding on the utility of this method will require a

larger data pool containing isometric contractions that excite

additional activation levels. In addition, narrowing the reso-

lution of optimal joint angles used in the Hill-based model

identification from 10◦ to 5◦ may offer further reductions in

model estimation error.
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