
  

  

Abstract—This study explored the feasibility of building 
robust surface electromyography (EMG)-based gesture 
interfaces starting from the definition of input command 
gestures. As a first step, an offline experimental scheme was 
carried out for extracting user-independent input command sets 
with high class separability, reliability and low individual 
variations from 23 classes of hand gestures. Then three types 
(same-user, multi-user and cross-user test) of online 
experiments were conducted to demonstrate the feasibility of 
building robust surface EMG-based interfaces with the hand 
gesture sets recommended by the offline experiments. The 
research results reported in this paper are useful for the 
development and popularization of surface EMG-based gesture 
interaction technology. 

Index Terms—Electromyography (EMG), hand gesture, 
pattern recognition, user interface 

I. INTRODUCTION 
HILE there are many technical advances and the state 
of the art reported in the research literature is 

promising, the development of surface EMG-based gesture 
interaction is progressing slowly. The distance from the 
current custom-built professional applications of surface 
EMG-based interaction technology to future commercial 
mass-market products is still significant [1]–[4]. 

Surface EMG-based gesture interaction is based on a 
fundamental assumption that the muscle activity patterns 
detected at certain measurement positions are repeatable for 
the selected gesture actions. However, there are many factors 
that affect the characteristics of surface EMG signals [5]–[7]. 
For instance, individual differences and electrode 
displacements on the skin surface can result in differences in 
surface EMG measurements of a particular person and 
gesture task made at different times. All these factors make it 
a challenging task to realize a robust surface EMG-based 
gesture interaction system.  

The definition of a user-independent input command set is 
a key problem in the realization of a robust surface 

 
Manuscript received April 3, 2009. This work was supported in part by 

National Nature Science Foundation of China (NSFC) under Grant 60703069, 
and National 863 plans projects under Grant 2009AA01Z322. 

Chen Xiang is with the Electronic Science & Technology Dept. University 
of Science & Technology of China, PRC (phone: +86-551-3601811; fax: 
+86-551-3601806; e-mail: xch@ustc.edu.cn).  

Vuokko Lantz is with Interaction & User Interfaces, Media CTR, Nokia 
Research Center, Helsinki, Finland (e-mail: vuokko.lantz@nokia.com). 

Wang Kong-Qiao is with Visual Interaction Systems, Nokia Research 
Center, SRC Beijing, PRC (e-mail: kongqiao.wang@nokia.com) 

Zhao Zhang-Yan, Zhang Xu, and Yang Ji-Hai are with the Electronic 
Science & Technology Dept. University of Science & Technology of China 

EMG-based interaction system. The major features of a 
user-independent input command set are high class 
separability between the gesture classes, low level of 
individual variations, and also high generality and 
repeatability of the surface EMG measurements. In other 
words, the surface EMG patterns of the gestures should be 
detected reliably and discriminated effectively using the same 
signal collection scheme and pattern recognition algorithm 
within and between the users. As a requisite for the 
implementation of a successful gesture-based user interface, 
the definition of input command gestures has not received 
enough attention. Reports that describe the 
user-independence of the input command gestures are hard to 
be found. Similarly, systematic studied on the feasibility of 
building a robust EMG-based interface cannot be found.  

Different from previous studies which mainly focus on the 
pattern recognition algorithms, the novelty of this paper is to 
conduct a research on the feasibility of building robust 
surface EMG-based interface starting from the selection of 
input command gesture set. To reach the goal, a research 
scheme consisting of two types of experiments, i.e. offline 
and online experiments, was conducted. The motivation of 
the offline experiment was to identify user-independent input 
command sets suitable for surface EMG-based interaction. 
The online experiment was designed and conducted to 
demonstrate the feasibility of building robust surface 
EMG-based interfaces with the user-independent input 
command sets. The research results of this paper are 
meaningful for the development and popularization of 
surface EMG-based interaction technology. The target 
applications include various aspects in the field of 
myoelectric control, such as robotic control, prosthetics, and 
human- computer interaction etc. 

II. SURFACE EMG SIGNALS PATTERN RECOGNITION 
METHOD 

The pattern recognition algorithm applied in our work 
consists of the detection of gesture action segments, feature 
extraction, and classification of hand gesture surface EMG 
signals. The segmentation algorithm is used for identifying 
the parts of the continuously measured surface EMG signal 
which corresponds to the gesture actions. A segmentation 
method based on a moving average algorithm [8] was used 
for searching the beginnings and ends of the gesturing action 
in our work. 

Feature extraction algorithm compresses the surface EMG 
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signal segments into feature vectors. The features should be 
designed so that they can emphasize the gesture class-specific 
characteristics of the surface EMG signal. Various 
time-domain, frequency-domain, and time-frequency surface 
EMG features have been used successfully for discriminating 
muscle contraction patterns [9], [10]. In our work, mean 
absolute values (MAV) and fourth-order autoregressive (AR) 
model coefficients, which are confirmed to be well suited to 
surface EMG signal modeling [11], were used in the 
formation of the feature vectors. 

In classification phase, the classifier is trained with the 
feature vectors to distinguish the different gesture action from 
each other with high accuracy. Many kinds of classifiers such 
as classical linear classifier, neural network (NN), statistical, 
and fuzzy techniques have been used for the classification of 
gesture surface EMG features [12]–[13]. In this paper, Linear 
Bayes Normal Classifier (BayesNormal_1) [14] was adopted. 

III. OFFLINE EXPERIMENTAL METHOD AND RESULTS 

A. Surface EMG Data Collection 
In total 23 hand gestures consisting of various wrist and 

fingers motions were defined and studied in this work. These 
gestures include 6 kinds of wrist motions, 6 kinds of 
individual finger motions, and 11 kinds of multi-finger 
motions, and are named after the four letters logograms of 
their English descriptions, as listed in Table I. 

Ten healthy subjects (5 males, 5 females), with an age 
range from 20 to 26 years, were recruited for the data 
collection. Among the ten subjects, two females and two 
males are members of the research group and had received 
some training before data collection. The other six subjects 

were recruited from the university and did not receive any 
relative training beforehand. These subjects have no history 
of neuromuscular or joint diseases and were informed of the 
associated risks and benefits specific to the study. Subjects 
signed an informed consent form prior to data collection. 

DELSYS Myomonitor IV EMG system was used for the 
signal acquisition. Six sensor positions (4B, 4D, 4F, 4H, 5C, 
and 5G shown in Fig. 1. in blue blocks) on the back of the 
forearm were used for capturing hand gestures for they 
covered nearly all the main muscles involved in the defined 
hand gesture tasks. Surface EMG data samples were collected 
from each subject on five days in a four-week time period. 
Two separate measurement sessions were performed per day 
and each task was repeated 20 times per session. The interval 
time between two sessions was over four hours to ensure that 
subjects had enough time to rest and recover. Sensors were 
removed when a session was finished and re-installed before 
the next session. Thus natural sensor displacements and skin 
condition variations occurred between measurement sessions. 

B. Three Types of Offline Hand Gesture Pattern 
Recognition Schemes 
Same-user experiment. Training data and test data 

consisted of different gesture samples but were collected 
from the same subject. 

Multi-user experiment. Data from all ten subjects were 
used for training a common classifier which was then used for 
classifying gesture action samples from these same users.  

Cross-user experiment. Data from four well-trained 
subjects were used for training a classifier, and the 
well-trained classifier was then used for recognizing hand 
gestures of the six other untrained subjects. 

TABLE I   
BRIEF DESCRIPTIONS AND LABELING OF HAND GESTURES 

Sorts Gesture Name Brief Description 

Relaxation RLXT Relaxation 
FLWR Flexion of Wrist 

EXWR Extension of Wrist 
UFWR Unlar Side Flexion of Wrist 
RFWR Radial Side Flexion of Wrist 
WPRN Wrist Pronation 

Wrist motions 

WSPN Wrist Supination 
EXTF Extension of Thumb (I) 
EXIF Extension of Index Finger (II) 
EXMF Extension of Middle Finger (III) 
EXRF Extension of Ring Finger (IV) 
EXLF Extension of Little Finger (V) 

Individual 
finger 

motions 

HOOK “Hook” Gesture 
OKAY “Okay” Gesture 

VCTR “Victory” Gesture 

PINT “Point” Gesture 

EXPM Extension of Palm 

HDGP Hand Grasp / Fist 

ASLC Letter “C” in ASLa and CSLb 

ASLK Letter “K” in ASL and CSL 

ASLM Letter “M” in ASL and CSL 

ASLN Letter “N” in ASL and CSL 

ASLY Letter “Y” in ASL and CSL 

Multi-finger  
motions 

CSLT Letter “T” in ASL and CSL 

aASL means American Sign Language, bCSL  means Chinese Sign Language

TABLE II  
SELECTED USER-INDEPENDENT HAND GESTURE SETS 

 SN Hand Gesture Tasks 

1 WPRN, HDGP, EXPM, EXWR, FLWR 
2 RFWR, HDGP, EXPM, EXWR, FLWR 

3 EXMF, HDGP, EXPM, EXWR, FLWR 
4 EXLF, HDGP, EXPM, EXWR, FLWR 

5-task 
set 

5 HOOK, HDGP, EXPM, EXWR, FLWR 
6 VCTR, WPRN, HDGP, EXPM, EXWR, FLWR 
7 EXTF, WPRN, HDGP, EXPM, EXWR, FLWR 
8 EXMF,WPRN HDGP, EXPM, EXWR, FLWR 
9 EXLF, RFWR, HDGP, EXPM, EXWR, FLWR 

6-task 
set 

10 EXMF, RFWR, HDGP, EXPM, EXWR, FLWR 
8-task 

set 
11 

EXTF, EXLF, WSPN,WPRN,  
HDGP, EXPM, EXWR, FLWR 

Fig. 1.  Six-channel sensor placement scheme. The forearm was divided into 
five equal parts in longitudinal direction, and into eight parts in annular 
direction to determine electrode positions. 
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These three types of offline experiments were carried out 
orderly. Only those hand gesture sets which yielded good 
recognition rates in the previous experiment were taken into 
consideration in the next experiment. Hand gesture sets 
which got excellent recognition results in all the three 
experiments were considered to be user-independent and 
were recommended to be used in general surface EMG-based 
user interfaces. For ensuring the reliability of the 
experimental results, the same-user and multi-user 
experiments were implemented with training data from the 
first three collection days and test data from the fourth and 
fifth day. The cross-user experiments were implemented with 
training data and test data from all five days but from 
different subjects. 

C. Offline Experimental results 
Three kinds of offline surface EMG pattern recognition 

experiments with all 5-task, 6-task and 8-task sets of 23 
defined hand gestures were conducted. Based on these results, 
in total 11 hand gesture sets (see Table II), including six 
5-task sets, four 6-task sets, and one 8-task set were 
considered to be user-independent and recommendable as 
input command sets for surface EMG-based user interfaces. 
Fig. 2 shows the average recognition rates for these selected 
user-independent hand gesture sets in three types of offline 
hand gesture recognition experiments. The x-coordinate 
denotes the serial number (SN) of the hand gesture set (see 
Table II) and the y-axis represents the recognition rates (true 
positive values) in percentages. Results were averaged across 
subjects and all hand gestures within each set. The 
recognition rates are given in the form of mean ± standard 
deviation. Markers show the mean values and the height of 
the error bars above and below the mean values is the 
standard deviation. 

Following observations can be made from Fig. 2: 1) The 
average recognition rates for the 11 gesture sets were 
89.6%-94.3% in the same-user experiment. Because the 
pattern recognition experiments were carried out with data 
from ten subjects within a four-week time period, the 
generality and repeatability of these hand gesture sets were 
affirmed. 2) The average recognition rates were 
86.4%-94.3% in the multi-user experiment and 76.7%-90.2% 
in the cross-user experiment. These results demonstrate the 
user-independence of these selected hand gesture sets. 
However, there were significant standard deviations in the 
cross-user experiment results. In the data analysis, we found 
out that gesture class separability was poor for three untrained 
subjects and good for the other three. 

IV. ONLINE TEST EXPERIMENTAL METHOD AND RESULTS 
As an example, one of the 6-task hand gesture sets and the 

8-task set (No.7 set and No. 11 set in Table II) were selected 
for online test, and all test experiments were conducted on a 
real-time surface EMG-based gesture recognition platform. 
More details can be found about the platform in our previous 

publication.  
Twenty subjects (10 males, 10 females) with age ranges 

from 20 to 36 were recruited for same-user online test 
experiments. To ensure the generality and robustness of 
classifiers, each subject took part in firstly 8 data collection 
sessions (in 4 days) designed for collecting the training data. 
Then each subject finished 2 test trials in 2 different days. 
Subject performed 20 actions per task in each trial, and the 
well-trained classifier was used for classification.  

The first step of multi-user & cross-user test experiments 
was to establish a classifier. The classifier was trained using 
surface EMG data from ten well-trained subjects who 
performed excellently in the same-user test experiment. We 
call these subjects whose surface EMG data were used to train 
the classifier template subjects. To establish a robust hand 
gesture classifier insensitive to time variations and sensor 
displacements, data from ten trials in same-user online test 
experiment was used to train the classifier. In multi-user test 
experiments, 10 template subjects took part in online test. In 
cross-user test experiments, 50 non-template subjects (40 
males, 10 females, with ages from 21 to 63) took part in 
online test. The requirements and the procedure to select the 
test subjects were the same as for the offline experiments. 
Each subject was tested ten times on five different days with 
20 actions per task per trial in the two kinds of online test 
experiment.  

Table III and Table IV give the online test results for 6-task 
and 8-task sets, respectively, and recognition rates were 
averaged across all subjects for each task. We can observe 
that same-user experiments got excellent average recognition 
rates (97.4% for 6-task set, and 94.6% for 8-task set) with 
small standard deviation. At the same time, multi-user 
experiments also got excellent average recognition rates 
(94.7% for 6-task set, and 89.5% for 8-task set), and  
cross-user test got 90.7% and 81.3% average recognition 
rates, respectively. 

V. DISCUSSION AND CONCLUSION 
To identify user-independent hand gestures with low level 

of individual differences, three kinds of offline pattern 
recognition experiments were designed to explore the effects 
of detection time, sensor displacements and individual 
differences on the repeatability and user-independence of 
hand gesture surface EMG measurements. In the offline 
same-user experiments, we found that most of the 5-task, 
6-task and 8-task sets of the 23 defined hand gestures can be 
classified accurately. This result demonstrates that the 
between-day differences are modest compared to the overall 
class separability of these hand gesture tasks. Thus it is easy 
to build a well performing user-specific surface EMG-based 
interface with these hand gesture sets. This experimental 
result is in accordance with the previous research findings in 
the field of surface EMG-based gesture recognition.  

In multi-user and cross-user experiments, 11 different hand 
gesture sets consisting altogether of 12 hand gesture tasks 
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were classified with good recognition rates (see Fig. 2). This 
result shows that some hand gesture tasks, such as HDGP, 
EXPM, EXWR and FLWR, can be distinguished very 
reliably from other tasks. So the surface EMG measurements 
of these tasks have small between-day and between-subject 
differences and good class separability. These gestures are 
considered to be well suited for user-independent 
EMG-based interfaces. On the other hand, we found that 
some tasks, especially six sign language tasks (ASLC, ASLK, 
ASLM, ASLN, ASLY, and CSLT), were difficult to 
discriminate. This result shows that there are large 
between-subject differences for these hand gesture tasks, and 
advanced pattern recognition approaches are needed for 
classifying them. 

To simulate the real life use situations and to collect 
representative gesture samples, surface EMG data for offline 
analysis in this paper was collected in open environment. We 
designed flexible wearable electrode belts to reduce the 

time-cost in placing sensors, and the sensor placement was 
adaptive without strict adjustment for the locations of 
electrode. So the selected hand gesture sets should be robust 
enough for user-independent interfaces and the reported 
recognition results can be considered to be realistic. Results 
of the online experiments demonstrated even further the 
feasibility of building user-specific, multi-user, and 
user-independent surface EMG-based interfaces with these 
recommended hand gesture sets. With the proposed 
user-independent hand gesture sets and by training the 
classifier  with gesture data collected from some well-trained 
users, a new user can interact with the system without training 
the recognition system with his/her own gesture samples first. 
The promising research results reported here can hopefully 
drive the development of user-independent surface 
EMG-base interaction systems forwards. 
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Fig. 2. Offline pattern recognition results for 11 selected user-independent  
hand gesture sets. 

TABLE III  
ONLINE TEST RESULTS FOR 6-TASK SET 

Same-user Multi-user Cross-user Task 
Mean(%)   Std(%)  Mean(%)  Std(%)  Mean(%)  Std(%) 

FLWR 98.6           4.1  99.4        1.8 90.4         19.6 
EXWR 95.3           8.7 90          12.8 87.6         17.7 
HDGP 96.9           5.7 81.3       33.3 85.1         21.3 
EXPM 97.5           6.7  99.4        1.8 96.8          7.5 
WPRN 98.6           2.9 100           0 91.8         14.4 
EXTF 97.5          6.2 98.1        5.3 92.4         18.7 
AVR 97.4          1.23 94.7          9.2 90.7         16.5

TABLE IV 
ONLINE TEST RESULTS FOR 8-TASK SET 

Same-user Multi-user Cross-user Task 
Mean(%)   Std(%)  Mean(%)    Std(%)  Mean(%)  Std(%) 

FLWR 97             6.6 95             8.0 89.2        21.7 
EXWR 95             10 93.8          8.8 82           25.6 
HDGP 95.3          9.5 84.4         34.6 69           37.4 
EXPM 95.3          13.9 100           0 97.2         6.1 
WPRN 96.8          6.7 80            35.2 83.2        23.7 
WSPN 92.8          10.8 86.3         31.6 76           31.6 
EXTF 93.3          8.0 95            7.1 77.4        35.5 
EXLF 91.3          16.9 81.3         29.4 76           35.5 
AVR 94.6          1.98 89.5         19.3 81.3        27.1 
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