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Abstract— This paper describes a robust motion discrimi-
nation method based on the myoelectric potential of human
forearm by the adaptive fuzzy inference considering the muscle
fatigue. In the conventional studies, a motion discrimination
based on the myoelectric potential of human forearm realizes
the high discrimination precision. However, the characteristic of
the myoelectric potential gradually changes for muscle fatigue.
Therefore the motion discrimination considering muscle fatigue
is required. The purpose of this study is to correspond to the
change in the myoelectric potential by the muscle fatigue and
keep the high discrimination precision. This study proposes
the redesign method of the fuzzy inference adapting to the
dynamic change of the myoelectric potential by the muscle
fatigue. Some experiments on the myoelectric hand simulator
show the effectiveness of the proposed motion discrimination
method.

I. INTRODUCTION

In the modern society where the safe management and

accident prevention are recognized enough, there is a per-

son losing his/her arm by a traffic accident or a disaster.

Therefore the development of artificial arm having a same

function for lost arm is expected. An electromyogram (EMG)

is always paid its attention to the control signal of such

an artificial arm, and many studies and development are

performed.

The EMG is a record of the myoelectroc potential

that muscular fiber occurs in response to a motion order.

Therefore, the EMG includes motion order information.

Fig.1 shows the example of myoelectric potential waveform.

Highly precise pattern analysis processing is necessary to

estimate motion intention from an EMG. In the several

studies, the neural network is often used and realizes the

high discrimination precision.

In the conventional study, some methods such as the

motion discrimination by the backpropagation based on fre-

quency information of the myoelectric potential [1], the mo-

tion discrimination by the neural network based on statistics

structure [2], the motion discrimination by ”reconfiguration

possibility hardware and the genetic algorithm” [3], the

motion discrimination by the channel choice with the monte

carlo method by the electrode of 6*16 channels [4], the

movement identification by ”fast Fourier transform and chief

ingredient analysis and the neural network” [5] have been

used. In the other studies, the hidden Markov model [7],

[8], the neural network [9], the fuzzy inference [10]-[12],
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Fig. 1. Myoelectric potential waveform example.
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Fig. 2. System schema.

the linear discriminant analysis (LDA) [13], [14] have been

used.

This study uses the fuzzy inference for the motion dis-

crimination based on the myoelectric potential signal of the

forearm. Because the fuzzy inference does not cause the

problem such as the local minimum of the neural network

and the fuzzy inference is easy to perform the redesign

for corresponding to change of the myoelectric potential by

the muscle fatigue, this study uses the fuzzy inference. The

characteristic of the myoelectric potential gradually changes

for muscle fatigue [15]. Therefore the motion discrimination

considering muscle fatigue is required [16]. The purpose of

this study is to correspond to the change in the myoelectric

potential by the muscle fatigue and keep the high discrimi-

nation precision. This study proposes the redesign method

of the fuzzy inference adapting to the dynamic change

of the myoelectric potential by the muscle fatigue. Some

experiments on the myoelectric hand simulator show the

effectiveness of the proposed motion discrimination method.

II. MOTION DISCRIMINATION SYSTEM

A. Summary

A flow of the motion discrimination system process ap-

pears in Fig.2. This study outputs the discrimination motion

to the simulator made by using Open-GL.
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Fig. 3. RMS waveform example.
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B. Measurement of Myoelectric Potential

The measurement of the myoelectric potential uses a dry

process myoelectric amplifier SX230 made in Biometrics

Company of four channels. The amplification rate is 1000

times, and the bandwidth is 20Hz - 460Hz. This myoelectric

amplifier has the third Butterworth filter (a high pass filter of

20Hz) and the eighth coalition Chebyshev filter (a low pass

filter of 460Hz) built-in. The measured myoelectric potential

is input to the PC after making A/D conversion (sampling

period 1kHz). The myoelectric potential input into a PC

draws a waveform in an application manufactured by Visual

C++.net 2003 (cf. Fig.7).

C. Feature Extraction

This study uses the root mean square (RMS) that shows

the power of a signal for the feature quantity. The frequency

information is often used to the feature quantity, but RMS is

used for the feature quantity because the calculation of the

frequency information needs much calculation amount. The

RMS is defined as

RMS(t) =

√

√

√

√

1

2T

T

∑
τ=−T

e2(t + τ) (1)

The symbol e(t) is the myoelectric potential signal, and

-T,+T is a calculation interval. This study assumes the

calculation interval 70[ms].
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Fig. 5. Fuzzy membership function.

TABLE I

FUZZY IF-THEN CONTROL RULES.

CH1 CH2 CH3 CH4 output value

HP SM SM SM SM 1.00

MP MD SM SM SM 0.75

MP SM MD SM SM 0.75

MP SM SM MD SM 0.75

MP SM SM SM MD 0.75

LP SM SM MD MD 0.50

LP SM MD SM MD 0.50

LP MD SM SM MD 0.50

LP SM MD MD SM 0.50

LP MD SM MD SM 0.50

LP MD MD SM SM 0.50

EP SM MD MD MD 0.25

EP MD SM MD MD 0.25

EP MD MD SM MD 0.25

EP MD MD MD SM 0.25

NM BG BG BG BG 0.00

III. MOTION DISCRIMINATION BY FUZZY

INFERENCE

A. Membership Function by Average Value and Standard

Deviation of Myoelectric Potential

The membership function is designed by the average value

(AVE) and the standard deviation (SD) from RMS of the

myoelectric potential for t times of each motion measured

beforehand. Fig.3 shows the waveform of the myoelectric

potential when maintaining strength with a palm opened

(the full line). The dash line shows the average value. The

measured myoelectric potential never maintains a constant

value when the muscle is having power maintained in the

same way. Therefore this study obtains the average value

and the standard deviation from RMS of t times of the

identification target motion. The distribution that varies from

this average value is regarded as a normal distribution. Based

on the normal distribution, there are data of 68.3% in the

range of ±SD from AVE, and there are data of 95.5% in the

range of ±2SD from AVE, and there are data of 99.7% in

the range of ±3SD from AVE (cf. Fig.4).

Therefore, the membership function is designed as shown

in Fig.5. If RMS is near to AVE, the membership function

is SM (Small). If RMS is slightly far from AVE, the

membership function is MD (Middle). If RMS is far from

AVE, the membership function is BG (Big). The membership

function takes grade value from 0 to 1 depending on RMS.

Such a membership function is designed for every channel

of each motion.
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B. Fuzzy Rule

The fuzzy rules are designed as shown in Table I. This

study decides the motion probability by a combination of

SM, MD and BG of four channels. The motion probability

is high probability (HP) in the case of SM on all channels,

and middle probability (MP) in the case of SM on three

channel and MD on one channel, and low probability (LP)

in the case of SM on two channel and MD on two channels,

and extremely-low probability (EP) in the case of SM on one

channel and MD on three channels. In addition, the motion

is not performed (No Motion : NM) in the case of BG on

all channels. ”output value” of Table I shows the inference

output value of each rule.

The proposed fuzzy inference method applies the pos-

sibility distribution inference method [17]. The possibility

distribution inference method has little computational com-

plexity compared with the ”Min-Max” method. The degree

of confidence ωk of each rule is calculated from (2). Ak
p(xp)

is an output value of the membership function of each rule.

xp is an input value to each membership function. P is the

number of parameters in the rule.

ωk =
P

∏
p=1

Ak
p(xp) (2)

The inference result ŷ of the entire rule is calculated from

(3). ŷk are an output value of each rule (cf. ”output value” of

Table I). K is the number of rules, this study is K=16 by Table

I. The inference result ŷ is assumed to be the discrimination

probability DP of motion. These inferences are performed

for the each identification object motion.

ŷ =

K

∑
k=1

ωk
· ŷk

K

∑
k=1

ωk

(3)

IV. ROBUST DISCRIMINATION FOR MUSCLE

FATIGUE

The myoelectric potential gradually changes according to

muscle fatigue, and the motion discrimination considering

muscle fatigue is required. Therefore this study tries to

realize the redesign of fuzzy inference system corresponding

to the change of the myoelectric potential. However the

discrimination system does not understand the motion that

the subject is intending. In this study, if the same motion

is continuously discriminated L times, it is assumed that

the discrimination result is correct. The average value and

the standard deviation for the redesign are calculated from

”the calculation data of the latest average value and standard

deviation” and ”the L th RMS of the myoelectric potential”.

The membership function is redesigned by the average value

and the standard deviation of the redesign data. The discrim-

ination number of times is recounted after the redesign, and

the average value and the standard deviation are sequentially

updated.

Fig. 6. Experimental setup of motion discrimination.

Fig. 7. Waveform drawing application and myoelectric hand simulator.
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Fig. 9. Discrimination Motion.

V. MOTION DISCRIMINATION EXPERIMENT

A. Experiment Environment

Fig.6 shows the experimental setup of motion discrim-

ination and Fig.7 shows the simulator. The measurement

position allocates the myoelectric amplifier of four channels

every 90 degrees to the right forearm of the subject (cf.

Fig.8). Because there are ”flexor digitorum muscle”, ”flexor

carpi radialis muscle” and ”flexor carpi ulnaris muscle”, etc.

used for the identification target motions at this position, the

myoelectric potential is measured at this position. In this
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Fig. 10. Experimental results ”with and without redesign” (Subject A).
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Fig. 11. Experimental results ”with and without redesign” (Subject B).

study, six kinds of motions of ”Open”, ”Grasp”, ”Flexion”,

”Dorsiflexion”, ”Pronation” and ”Supination” are applied as

the identification target motions (cf. Fig.9). In addition, the

motion is recognized when the discrimination probability DP

is more than ”0.8”. And the recognition is canceled if the

discrimination probability DP becomes below ”0.3”.

In these experiment contents, six kinds of motions are

performed by 50 times respectively. The discrimination result

by the fuzzy inference identifies the probability that the

result is correct for real motion. This study continuously

performs these experiments 3 times without resting the arm,

and the change of the discrimination precision is confirmed.

The condition of the redesign is assumed to be L=1∼3

time. These experiments never give an arm load, and it is

performed with two physically unimpaired people (subject

A, B).

B. Experiment Results

Fig.10 and Fig.11 show the experiment results. All mo-

tions were able to get the high discrimination precision more

than 90% with two subjects. Both the redesigns (with and

without) were almost the same as the identification rate,

but the recognition at the beginning of the motion was

occasionally delayed without the redesign. An example of

delay of the motion discrimination when grasping a palm is

shown in Fig.12. It shows ”the total value of all channels

of the myoelectric potential” and ”the result of the fuzzy
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Fig. 13. Change of Membership by redesign.

inference by the redesign (with and without)”. The grade

values with redesign are totally higher than those without

redesign. This result shows that the proposed redesign system

realizes the higher performance of motion inference. Because

the result of the fuzzy inference deteriorates without the

redesign as shown in Fig.12, the motion recognition is late.

Therefore, the user is made to feel the delay. The result of

a fuzzy inference is improved by the redesign. It is possible

to correspond to the change in the myoelectric potential by

the redesign. Consequently, the delay at the beginning of

recognition was able to be suppressed by the redesign.

Fig.13 shows the change in the membership function by

the redesign. The full line shows the membership function

before experiments, and the dash line shows the membership

function after the third experiment. The membership function

has been changed according to the change of the myoelectric

potential by the muscle fatigue.

C. Discussion

This study realized a human forearm motion discrimina-

tion based on the myoelectric signal by the fuzzy inference

but still has the following important future problems.

• This study set the threshold of the discrimination prob-

ability DP of the motion with a fixed value, but the

same fixed value may not be the optimal value to all
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motions. Therefore, the threshold of the discrimination

probability DP has to be designed as the optimal value.

• There is a possibility of influencing the discrimination

precision after lost of fatigue when the redesign is

made to correspond to the muscle fatigue completely.

Therefore, the redesign has to be designed as the optimal

number of times.

• The kinds of the identification target motions will have

to be increased and the motions will have to be com-

bined so that the discrimination system can respond to

the various motions and the situations of the activities

of daily living (ADL).

• The myoelectric potential signal is different from be-

tween an amputee and a physically unimpaired person.

Therefore some experiments will have to be performed

by amputees.

VI. CONCLUSION

This paper proposed a robust motion discrimination

method based on the myoelectric potential of human forearm

by the adaptive fuzzy inference considering the muscle

fatigue. This study was able to obtain the high discrimination

precision by the redesign of the fuzzy inference adapting

to the dynamic change of the myoelectric potential by the

muscle fatigue. In addition, the delay of the recognition

beginning was able to be suppressed by the redesign. The

misrecognition of the motion is very dangerous to the my-

oelectric hand control. Therefore it is necessary to get high

discrimination precision. Our future work will solve some

important problems described in the last chapter.
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