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Abstract— The recorded motion from (pathological) tremor
patient may consist of the involuntary tremulous component
and the intended motion. These two components have to be
separated so that the actuation part will be able to suppress
only the tremor. This paper proposes an algorithm to remove
the intended motion by using an extended Kalman filter with
the help of adaptive high-pass filter. The effectiveness of the
algorithm is also shown in the presence of stimulation artifacts.
It is part of the active pathological tremor compensation project
for human upper limb.

I. INTRODUCTION

THE recorded upper limb motion of a person with tremor

may consist of the involuntary tremulous component

and his intended motion. These two components have to

be separated so that the tremor can be suppressed. Our

proposed active tremor compensation obtain signals from

human upper limb motion through accelerometer (ACC) and

surface electromyography (sEMG) [1]. After the separation

Functional Electrical Stimulation (FES) is used to attenuate

the tremor in anti phase, i.e. if tremor is detected in the

agonist, FES will counteract it by actuating the antagonist.

The proposed filtering method in this paper is based on

Extended Kalman Filter. Phase delay due to the low pass

filter used in rectification of sEMG signal is minimized. FES

artifact [2] is also considered. Finally in the last section it is

shown that it is possible to attenuate tremor as it occurs by

utilizing the electromechanical delay [3].

II. PRELIMINARIES

A. Experiment setup

The hardware setup for the tremor compensation system

is shown in Fig. 1. The sEMG amplifier is EMG100C from

Biopac Systems, Inc., USA, set to pass 10-500 Hz with

500 times magnification. The FES system is Compex 2

from Compex SA, Switzerland. It has two analog inputs

which is used to control the stimulation output, e.g. its

amplitude and when to start/stop the actuation. Real-time

operating system (QNX ver. 6.3.B4, QNX Software System

International Corporation, Canada) is used in the PC to

guarantee an iteration time as short as 0.2 ms or 5 kHz

sampling rate. In this paper FES will not be included in the

loop since the focus is on the filtering of intended motion.
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Fig. 1. Hardware setup of real-time tremor compensation.

B. Input signal

SEMG data taken from a Holmes’ tremor patient is shown

in Fig. 2. The data is taken during finger-to-nose test whereby

the patient is asked to touch his nose and stretch to a target

in front of him repeatedly. For our interest here, only the

sEMG data from the wrist flexor (flexor carpi ulnaris, Fig.

2–middle) will be considered. The small but frequent burst

seen in the wrist flexor is the tremor. Added into that is the

intended motion (larger signal but less frequent) as shown in

the top part of Fig. 2. To provide a more focused information,

full rectification and a low-pass filter is applied to the raw

sEMG signal (Fig. 2–bottom).
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Fig. 2. SEMG signal of Holmes’ tremor patient.
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III. METHODS

The overall proposed algorithm to remove the intended

motion is given in Fig. 3. Linear envelope of raw sEMG

is obtained by full rectification and 2nd order elliptic filter

with 0.5 dB peak-to-peak ripple and 40 dB minimum stop

band attenuation, at 5 Hz cutoff frequency. Elliptic filter is

chosen because it provides a better attenuation with less order

compared to a Chebyshev or Butterworth filter. Furthermore

the phase delay incurred by the elliptic filter is slightly lesser

than that incurred by the other filters. Second-order filter is

chosen over first-order because it has sharper transition band.

Nevertheless the problem with classical low-pass filter is that

it incurs phase delay which is undesirable. This issue will

be considered in the following subsection.

Fig. 3. Flowchart of the intended motion filtering algorithm

A. Adaptive high pass filter

If a sinusoid is passed through a known low-pass filter,

the phase delay can be canceled by designing a high pass

filter correctly. However if the sinusoid has time-varying

parameters, the high pass filter must be changed adaptively.

This is the main idea of the high-pass filter developed in [4].

The linear envelope of tremor sEMG is not a stationary

signal but it is slowly varying in term of its frequency within

a narrow band (2-5 Hz for pathological tremor). With the

assumption regarding the input signal, the problem boils

down to designing an adaptive high pass filter which cancels

the phase lag caused by the low-pass filter. The design of the

high pass filter is done offline through brute force method

summarized below [4]:

1) Offline: Assuming the input signal frequency is 2, 2.5,

3, 3.5, and 4 Hz, a 2nd order elliptic high pass filter is

found for each frequency such that the phase lead of

the high pass filter is equal to the phase delay of the

low-pass filter. This is done by checking the high pass

filter of a slowly incremented cutoff frequency (thus

the brute force method). The result is shown in Fig. 4.

2) Offline: It can be seen that the poles and zeros have

linear relationships with the frequency (shown by a

line as a visual aid in the figure). Thus by using linear

regression, the relationship is obtained.

3) Online: An algorithm to find the tremor frequency is

needed so that the frequency can be used to design the

phase balancing high pass filter. In this paper, the EKF

developed in [1] is employed and shortly described in

the next subsection.

4) Online: Using the estimated frequency from the EKF

and the relationship calculated from point 2, the high

pass filter can be designed and applied to the signal.
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Fig. 4. Zero-pole plot of the high pass filters derived with brute force
method. There are actually two roots but each is complex conjugate of the
other.

B. Extended Kalman Filter (EKF)

To estimate the tremor frequency adaptively and the in-

tended motion, a slight modification of the EKF proposed in

[1] is used.

y(k) = r(k) sin(θ(k)) + b(k) (1)

θ(k) =

k
∑

κ=1

ω(κ)T + φ(k) (2)

where y(k) is the tremor signal (linear envelope of raw

sEMG), θ(k) is the total phase which consists of the varying

frequency ω(k) and the relative phase φ(k). The intended

motion is modeled as b(k). All the varying parameters of

the signal is assumed to behave as random walk. The rate

of the random walk is determined by the process noise. The

process model for the EKF is given below and is linear.
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+ w(k). (3)

With respect to implementation issue, the data is obtained

with 1000 Hz sampling rate, but the measurement update is

run only at 100 Hz. In between both measurement updates

only time update occurs and the innovation vector is set to

zero. This is to save computational time as the measurement

update loop is skipped 90% of the time.

C. FES artifact suppression

After the signal is passed through the adaptive high pass

filter, a simple threshold can be used to determine when

to start the actuation (via FES). It means, assuming the

signal only consists of tremor, anything above a certain noise

level is considered as tremor; thus the other muscle will be

stimulated.

However FES stimulation will affect sEMG reading [2].

Hence an artifact suppression algorithm [5] is proposed

for real-time tremor compensation system. The algorithm

consists of software blanking and comb filter. The blanking

starts when sEMG data is sensed to be bigger/smaller than

a specified threshold (bigger than the maximum sEMG level

of the subject). Then for a certain period of time (4 ms, also
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Fig. 5. Result of EKF algorithm to separate tremor from intended motion in finger to nose experiment (left) and Archimedean spiral drawing (right).

specified beforehand) the recorded sEMG data is set to be

zero. The comb filter is used to reduce the residual further

and 50 Hz power line interference.

IV. RESULTS AND DISCUSSION

The FES artifact suppression algorithm described before

is not able to remove the artifacts completely. Therefore the

effect of the sEMG signal with the artifact residual (after

processed through the suppression algorithm) on the EKF

algorithm is investigated. Because no trials with FES has

been done with tremor patients, the experiment is carried out

on a healthy subject simulating tremulous movement. It has

been found that voluntarily simulated tremor shares many

similarities with pathological tremor [6]. The subject tries

to simulate 2.5 Hz wrist tremor with the aid of a beeping

sound with that frequency (without any intended motion).

At the same time, FES is applied constantly on wrist flexor

(pulse width = 200 µs, frequency = 25 Hz, amplitude = 10

mA). SEMG is recorded at wrist extensor and EKF is run to

estimate the tremor parameters. It can be seen from Fig. 6

that the EKF is still able to estimate the tremor parameters.

The result of EKF in separating tremor and intended

motion is shown in Fig. 5 (left). In that figure the data used is

that from Fig. 2 (finger-to-nose action). Note that the dataset

used has no FES interference since it is just recording of

sEMG data. It can be seen that the EKF can separate the

intended motion from the tremor. Another set of tremor data

is tested with the algorithm. In this dataset the same patient

was asked to follow an Archimedean spiral on paper with a

pen. The result in Fig. 5 (right) also show a good separation

between intended motion and tremor.

To see the effectiveness of the adaptive high-pass filtering

algorithm, the phase lead between the output signal and

the EKF input signal, which is the linear envelope of raw

sEMG data, is calculated by cross correlation function. As
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Fig. 6. Raw sEMG with FES artifacts(top); its linear envelope and the
EKF estimate (bottom).

the ground truth, the raw sEMG data is filtered using the zero

phase filtering routine from Matlab, instead of a standard

low-pass filter. The lead between the output signal and the

zero-phase filtered input signal is calculated again. Ideally

the first lead should be the same as the second, although it

is likely that it will be smaller. It means that the adaptive

high-pass filtering cannot fully compensate the phase delay

incurred by the low-pass filter.

It was thought that the frequency estimation of the adap-

tive filter is a reason why the adaptive high-pass filtering

cannot work perfectly. Therefore the STFT is applied to the

signal (Fig. 7). The frequency estimate from EKF is almost

consistent with the estimate from STFT except during the

7th to 8th second. Here what probably happens is that the

EKF is tracking the intended motion instead of the tremor,

but was able to subsequently retrace the tremor.

This problem can be overcome by reducing the rate of
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random walk of the frequency in the EKF. Furthermore

the random walk model is generalized with a first-order

autoregressive model:

ω(k) = λω(k − 1) + (1 − λ)ω̄ + w(k), (4)

where ω̄ is a predetermined average value of ω. When λ = 1,

it is reduced to the random walk model. But if λ is reduced,

more weight is given to the predetermined average value,

which will prevent the EKF to track other components. The

effect of modifying the EKF (using λ = 0.99) is shown in

Fig. 7 and the phase lead is shown in Table I. It shows that

with λ = 0.99, 77% of the phase delay can be compensated,

compared to 62% when λ = 1.
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Fig. 7. Tremor frequency estimation using STFT and EKF (normal and
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TABLE I

EFFECTIVENESS OF ADAPTIVE HIGH-PASS FILTERING

Phase lead in samples λ = 1 λ = 0.99

Standard low-pass 31 34

Zero-phase low-pass 50 44

V. ELECTROMECHANICAL DELAY

In our proposed real-time system for active tremor com-

pensation (Fig. 1, electromechanical delay (EMD) is utilized

for all the processing necessary to compensate tremor at

that point of time. Thus phase delay should ideally be

compensated so that EMD can be fully exploited.

In [7], EMD caused by voluntary motion is longer than

that caused by FES. The reason suggested is the differ-

ent muscle fiber recruited during voluntary and involuntary

motion. In their work, the muscle tested is gastrocnemius

and the FES is applied in the tibial nerve in the popliteal

fossa. The method to define the onset of the motion in both

neuromuscular and kinematic data is not mentioned.

Experiments to confirm the result above were carried out.

FES will be applied directly to the muscle (wrist flexor, in

contrast to [7]). The actual motion is recorded by goniometer

(Biometrics). The subject was asked to simulate 2.5 Hz

tremor at wrist flexion, with the aid of a sound cue. To

determine the onset of flexion in goniometer, numerical

differentiation is used because the motion data resembles sine

wave. The peaks of the motion data are, therefore, the onset

of the flexion/extension. Single threshold is used to determine

the onset of sEMG data. For the test with FES, sEMG onset

is the same as when FES starts. This can be located by

looking at the FES artifacts. Offline zero phase low-pass

filtering is applied when necessary to reduce noise. The EMD

estimates (difference between onsets from goniometer and

sEMG data) are shown in Table II.

TABLE II

EMD ESTIMATES IN MILLISECOND FROM ±30-SECOND DATASETS

EMD in ms Set 1 Set 2 Set 3

Voluntary 62.55 ± 14.35 54.48 ± 15.69 73.89 ± 10.64

Involuntary 37.05 ± 4.42 42.52 ± 5.41 35.38 ± 4.49

The result shows that it is able to cancel the tremor

immediately since receiving sEMG data. The necessary

processing can be done and then the output will be delayed

accordingly so that FES can attenuate the tremor at the

right time. This leaves us with online estimation of EMD

and probably modification in the EKF. Inertial sensor such

as accelerometer can be used in conjunction with EMG

to get the EMG estimate. Furthermore, if there is enough

computational time, the adaptive high pass filter may not be

necessary, although the delay incurred by the low-pass filter

should still be obtained.

VI. CONCLUSION

An EKF-based algorithm to filter off the intended motion

from tremor has been proposed for real-time active tremor

compensation system. To compensate the phase delay due to

the inherent filtering, an adaptive high pass filter has been

implemented. Issues regarding electromechanical delay have

also been considered. This study further supports the feasi-

bility of real-time active pathological tremor compensation.
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