
  

  

Abstract—Presented in this work is a possible myoelectric 
control scheme for a rehabilitation robotic application. The 
control input is from a time delayed neural network (TDNN). 
The input to the TDNN is four electromyographic (EMG) 
signals associated with the movement of the elbow and shoulder 
joints. The output of the TDNN is the joint position of the elbow 
and the joint position of the shoulder in the sagittal plane. The 
results presented here show the possibility of controlling 
multiple degrees of freedom at once. Prior work has shown that 
the optimal delay for accurate position prediction from a 
TDNN was 875ms with a 125ms interval, but this work shows 
that a delay of 300ms and a 100ms interval achieves similar 
results. This points to the feasibility of a TDNN based control 
scheme.  

I. INTRODUCTION 
YOELECTRIC control systems have been available for 
some time [13]. These systems take advantage of the 

electromyographic (EMG) signals obtained from muscles in 
order to control a rehabilitation robot, an orthotic or a 
prosthetic device. The goal of myoelectric control is to 
identify the user’s intended motion during muscle 
contraction and implement that specific motion via the 
control system.  

The proposed application for this work is the control and 
teleoperation of a rehabilitation robot. The purpose of a 
rehabilitation robot is to assist and guide users in regaining 
limb function and enhancing their mobility. Applications 
include the rehabilitation of limbs for stroke patients or the 
assistance of everyday activity for those who have 
neuromuscular diseases such as muscular dystrophy.  An 
EMG based exoskeleton was developed in [16] to assist 
movement in the elbow joint. Many assistive devices also 
offer the flexibility of supporting motion in multiple degrees 
of freedom (DOF) for the upper-limb [9], [15]. It is 
recommended to read [5], [6], [8] for a comprehensive 
review of the work completed in rehabilitation robotics.                
 Myoelectric interfacing can be an essential aspect of 
human robot interaction for a rehabilitation application. The 
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typical approach to EMG signal processing and control is 
feature extraction followed by classification to determine a 
class of motion. Examples of myoelectric control schemes 
can be found in [7] and [4]. Recently, more attempts have 
been made to analyze and characterize the EMG signal from 
the shoulder [2], [10], [11]. Oskoei studies myoelectric 
control in [14].  

There are two drawbacks to the typical myoelectric 
control scheme. The first being that myoelectric control 
systems are usually dependent on isometric contractions that 
are repeatable. A myoelectric control system based on 
transient muscle contractions derived from natural motions 
is highly desirable. The second limitation is that most 
myoelectric control systems have the ability to only control 
one DOF at a single instance in time.  

The purpose of this paper is to investigate and develop a 
control scheme that would overcome the above two 
limitations. Cheron, et. al., were one of the first to show the 
ability of EMG signals to predict arm kinematics [3]. They 
demonstrated the ability to predict two dimensional position 
output from a neural network while subjects moved their 
arm in a figure eight motion. Au and Kirsch advanced the 
development of shoulder and elbow kinematic prediction 
from EMG activity [1].  

The work presented here is based on the work by Au and 
Kirsch. They showed that six EMG channels could be used 
to predict kinematics for all three DOF in the shoulder and 
the elbow using a TDNN. They found that the optimal delay 
was 875ms with 125ms intervals of delay. This work 
assesses the TDNN as a potential control architecture for a 
rehabilitation robotic system. To verify performance for this 
application, the time delay must be less than or equal to 
300ms while maintaining accuracy of the TDNN’s ability to 
predict joint position [13]. A simplified version of their 
approach is implemented by using four EMG channels and 
limiting movement to only the elbow and shoulder motion in 
the sagittal plane.  

II. METHODOLOGY 

A. Data Collection 
All of the data presented in this work was collected using 

the Upper Extremity Motion Capture System in the 
Biomechatronics Learning Laboratory at the Rochester 
Institute of Technology (RIT) [12]. The developed system 
captures EMG and joint angle data from the elbow and 
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shoulder. The data was obtained from 5 healthy subjects (4 
males and 1 female) ranging in ages from 23 to 24 years of 
age. In the first experiment, one subject’s data was used to 
determine the optimal parameters for the TDNN. The rest of 
the data from the other subjects were then used to test the 
optimal TDNN parameters found using the results of the first 
subject. EMG channels were placed on the biceps, triceps, 
deltoid, and pectoralis. The sampling rate for the data 
collection was 960Hz.  

In order to make the TDNN more robust, several types of 
movements were collected. Single joint movements of both 
the elbow and the shoulder were collected. Single joint 
movement consisted of movement from rest over the full 
range of motion for the specified joint and back to rest. Rest 
was considered to be the arm located at the subject’s side at 
full elbow extension. Full elbow extension was considered to 
be 180° and full elbow flexion ranged from 50° to 60° 
depending on the subject. In the shoulder, the rest position 
was considered to be 0° and the shoulder was elevated to a 
position ranging between 90° and 120° depending on the 
subject. Reaching motions were also collected that resulted 
in the movement of both DOF at once. The reaching motions 
consisted of reaching towards different points in space from 
rest and then returning to rest. Each type of motion was 
recorded for slow and fast repetitions. Slow movements 
lasted for approximately 3-4 seconds per repetition whereas 
fast movements lasted for 2-3 seconds. In order to train the 
TDNNs for variability, the exact times were not constrained. 
Twelve different trials of data were collected with each trial 
lasting 30 seconds in length. Six trials were reserved for 
training, and six trials were used for testing the TDNN. The 
six trials consisted of elbow, shoulder, and reaching motions 
for both fast and slow movements.  

B. Signal Processing Methods 
A block diagram of the signal processing methods used in 

this work is displayed in Fig. 1. The raw EMG signals 
obtained from the muscles were rectified and filtered prior to 
being input to the TDNN. The lowpass filter was a fourth 
order butterworth filter located at 4Hz. The filtering was 
implemented because the movements had no frequency 
content above this frequency.  
The architecture of the TDNN is displayed in Fig. 2. One 
should note that multiple inputs come from each EMG 
channel. Associated with a TDNN is an interval of delay 
represented by Δt and a total delay which is nΔt for n delay 
intervals. For instance, if the total delay was 300ms, and the 
time interval was 50ms, then n is equal to 6.  Because the 
goal of this work is to investigate the possibility of using the 
TDNN output as a myoelectric control input, different time 
delays were analyzed. The time delays tested were 300ms, 
600ms, and 900ms. The different delay intervals tested were 
50ms, 100ms, and 150ms. A single layer was used and the 
number of neurons tested was 10, 20, 30, and 40 neurons. 

  
Fig. 1.  The signal processing steps followed in the work presented.  
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Fig. 2. The time delayed neural network structure. The input came from the 
EMG channels and the output corresponded to the elbow and shoulder 
position.  
 

The use of the TDNN is a two step process consisting of 
training and testing. As recommend by Au and Kirsch, the 
position data was normalized between 0 and 1. All of the 
neural network simulations were executed using 
MATLAB’s neural network toolbox, Version 7.6. The 
neural network created was a feed-forward, back 
propagation network. The “tansig transfer function” was 
used for the hidden layer and a “linear transfer function” 
was used for the output layer. The training was limited to a 
maximum of 250 iterations.       

III. RESULTS  
By varying all of the parameters which included total 

delay, delay interval, and hidden layer neurons, 36 different 
neural networks were created for the first subject. Each 
neural network was trained using the six designated training 
trials of movement. Once trained, the neural networks were 
then tested with the six trials of test data. A comparison of 
the results while varying the number of neurons in the 
TDNN revealed that varying the number of neurons did not 
result in a change of accuracy. In order to simplify the 
presentation of the results it has been chosen to only show 
the results corresponding to the TDNN with 10 neurons in 
the hidden layer. This number was chosen because these 
TDNNs trained faster and will ultimately consume fewer 
resources in their final application. 
The results were analyzed both from a qualitative and 
quantitative perspective. Table 1 displays the combined 
average error for the shoulder and elbow combined for 
subject 1 while varying the total delay and the delay interval. 
Table 2 presents a more detailed breakdown of the errors for 
each specific motion and each joint over the different 
TDNNs for subject 1. For simplicity in presenting the 
results, only the detailed results for the TDNNs having 
100ms as the delay interval are shown in Table 2. This was 
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chosen due to the fact that varying the delay interval did not  
  

300 50 16.0±23.2
300 100 15.7±22.9
300 150 15.7±22.8
600 50 17.1±24.2
600 100 16.3±23.8
600 150 16.5±23.5
900 50 17.3±23.5
900 100 16.9±23.7
900 150 22.8±30.5

Time 
Delay 

Time 
Interval 

Overall TDNN Errors (Degrees)
Average 

Error

 
Table 1. The overall error for each TDNN neural network with 10 neurons 
in the hidden layer while varying time delay and time interval for subject 1.  

 

300 100 6.0±6.3 7.5±10.2 16.4±19.7 13.2±17.0 11.2±15.1 14.5±21.4
600 100 7.0±7.6 9.0±11.5 15.2±19.0 15.3±19.0 11.0±15.8 14.2±18.7
900 100 6.0±8.3 9.8±12.7 14.9±18.6 13.2±17.4 10.9±15.8 16.8±24.6

300 100 25.9±33.5 21.7±28.8 20.4±19.6 18.2±18.6 16.1±20.6 17.7±24.9
600 100 25.3±32.1 22.0±28.3 20.7±20.3 18.6±22.1 17.4±25.7 20.4±27.6
900 100 29.7±36.9 24.3±27.0 17.3±12.2 18.6±13.3 17.6±20.9 23.9±31.1

Shoulder Error for Subject 1 (Degrees)

Elbow Error for Subject 1 (Degrees)
Time 
Delay 

Time 
Interval 

Slow 
Elbow 

Fast 
Elbow 

Slow 
Shoulder 

Fast 
Shoulder 

Slow 
Reaching 

Fast 
Reaching 

Time 
Delay 

Time 
Interval 

Slow 
Elbow 

Fast 
Elbow 

Slow 
Shoulder 

Fast 
Shoulder 

Slow 
Reaching 

Fast 
Reaching 

 
Table 2. The error of shoulder position and elbow position for subject 1 for 
each type of movement. The TDNNs shown here had 10 neurons in the 
hidden layer and a delay interval of 100ms.  
 

1 6.0±6.3 7.5±10.2 16.4±19.7 13.2±17.0 11.2±15.1 14.5±21.4
2 19.1±24.1 21.2±25.7 12.0±10.8 21.6±13.3 20.3±27.4 20.1±26.3
3 6.4±8.2 11.0±14.6 27.7±27.0 27.6±33.5 20.1±24.6 19.7±26.2
4 15.2±24.9 19.2±27.8 26.1±36.9 29.8±41.9 29.6±39.6 35.6±43.4
5 4.2±5.1 6.9±10.5 11.6±12.6 12.1±15.8 14.6±17.6 15.9±19.1

1 25.9±33.5 21.7±28.8 20.4±19.6 18.2±18.6 16.1±20.6 17.7±24.9
2 6.5±9.2 10.3±15.3 13.7±16.4 18.4±23.2 18.8±24.9 22.5±25.5
3 34.3±40.0 29.1±33.6 26.8±21.0 30.1±22.8 23.3±28.1 27.6±32.7
4 28.4±29.9 22.8±30.6 10.4±10.2 16.0±14.5 11.5±15.0 13.3±17.6
5 21.2±24.7 31.8±36.3 17.8±23.5 22.3±23.6 29.6±35.2 21.0±26.8

Fast 
Shoulder 

Slow 
Reaching 

Fast 
Reaching 

Elbow Error (Degrees)

Shoulder Error (Degrees)
Slow 

Shoulder 
Fast 

Shoulder 
Slow 

Reaching 
Fast 

Reaching 

Test 
Subject

Slow 
Elbow 

Fast 
Elbow 

Slow 
Shoulder 

Test 
Subject

Slow 
Elbow 

Fast 
Elbow 

 
Table 3. The error of shoulder and elbow position over each movement for 
each subject. Each TDNN had 10 neurons in the hidden layer with a delay 
interval of 100ms.  

1 15.7±22.9
2 17.0±23.2
3 23.6±30.6
4 21.5±31.4
5 17.4±25.3

Test 
Subject

Average 
Error

 
Table 4. The average error of the shoulder and elbow position combined for 
all movements for a TDNN having 10 neurons in the hidden layer with a 
delay interval of 100ms.  
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Fig. 3. The output of the TDNN during fast shoulder movement for subject 
2. 
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Fig. 4. The output of the TDNN during slow reaching movement for subject 
1. 
 
have a significant effect on the results. The 100ms interval 
did perform slightly better than the 50ms and 150ms 
intervals as seen from Table 1. Displayed in Table 3 is the 
average error of each joint for each subject during each type 
of movement. The results in Table 3 are for the use of a 
TDNN having a time delay of 300ms and a time interval of 
100ms, parameters determined by the results of subject 1. 
Table 4 displays the average error of the shoulder and elbow 
combined for all the subjects using a TDNN with a delay of 
300ms and a time interval of 100ms. All average errors are 
presented with a standard deviation. 

A key feature of the suggested TDNN control approach is 
the ability to track more than 1 DOF at a time. Two test 
trials of the TDNN having a delay of 300ms and intervals of 
100ms are displayed in Fig. 3 and 4. Fig. 3 shows the output 
of the TDNN for a fast shoulder movement by subject 2. Fig. 
4 shows the output for a slow reaching movement by subject 
1. 
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IV. DISCUSSION AND CONCLUSION 
One of the main goals of this project was to study the 

applicability of the work completed by Au and Kirsch as a 
possible control scheme for a rehabilitation robot 
application. The feasibility of this was investigated by 
analyzing the effect of decreasing the total delay of the 
TDNN in conjunction with varying the delay interval. It was 
found that changing the number of neurons in the hidden 
layer and changing the delay interval did not have an effect 
on the accuracy of the TDNNs. Using a 150ms, 50ms, and 
then 100ms intervals resulted in a slight increase in accuracy 
as determined by the first experiments from subject 1. The 
most significant result to take away from this work is that it 
is possible to decrease the time delay without affecting the 
accuracy of the TDNN. In fact, the results here show a slight 
increase in accuracy when the total delay is decreased. Both 
a total delay of 300ms and 600ms achieved similar results in 
position accuracy, but increasing the delay to 900ms 
degraded the accuracy. Because there is no gain in accuracy 
by increasing the delay from 300ms to 600ms, the 300ms is 
more desirable for a control application. Once the optimal 
TDNN parameters were found for the first subject, these 
parameters were tested with other subjects. The other 
subjects had similar results, but were slightly less accurate. 
Another significant result is the ability of the TDNN to track 
both the shoulder and elbow joint at the same time during 
reaching motions as shown by Fig. 3 and 4. Test trials 
having large errors are probably a result variations between 
the training and testing data. Overall, the results show that 
the shoulder joint had better accuracy than the elbow joint.  

Since it is possible to decrease the time delay while 
maintaining accuracy in the TDNN, it may be desirable to 
develop a real time control scheme based on this method. It 
should be noted that an additional delay would occur due to 
the time needed for TDNN computation. The average time 
for the TDNN in the MATLAB environment is 14ms, which 
is small compared to the time delay of 300ms. A control 
scheme based on the TDNN approach would also allow for 
the control of more than one DOF at the same time. Control 
of multiple DOF simultaneously is not thoroughly discussed 
in the myoelectric control literature. Although the decrease 
in delay has been proven, and a myoelectric control scheme 
made more possible, the output of the TDNN is not 
completely ideal for control. Different approaches would 
need to be implemented to try and stabilize the control input 
as well as decrease the amount of error. Error of the 
immobile joint during single joint motions could possibly be 
improved by using training data that consists of only rest 
data. Another approach could also be to use a single TDNN 
for each joint.  

V. FUTURE RESEARCH 
Future research will entail performing a larger population 

study in order to further verify the results presented. Current 
myoelectric control systems are being developed in the 
Biomechatronic Learning Lab at RIT for a harmonically 

driven, rehabilitation robotic arm. The actual real time 
implementation of the TDNN scheme will be considered for 
the robotic arm. A comparison of the actual implementation 
of the classical myoelectric control schemes based on feature 
classification with a TDNN control scheme will also be 
pursued.  
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