
 
 

 

 

 
  

 Abstract— Diastolic heart failure (DHF) is present in over 
50% of hospitalized heart failure patients, and diastolic 
dysfunction is known to play a critical pathophysiologic role. 
Measurement of left-ventricular pressure (LVP) via 
catheterization is the gold standard for diastolic function (DF) 
evaluation, but current methods fail to fully capitalize on the 
complete information content of the pressure contour. We have 
previously demonstrated that a kinematic model of isovolumic 
pressure decay (IVPD), which accounts for restoring force 
(stiffness) and resistance (viscoelasticity/relaxation), provides 
mechanistic insight into IVPD physiology and provides an 
accurate fit to the recorded contour. Recently we derived a 
novel load-independent index of isovolumic pressure decay 
(LIIIVPD) involving IVPD kinematic model stiffness and 
resistance parameters. In this work we detail methods and 
provide guidelines by which LIIIVPD computation may be 
achieved in real-time from the pressure contour recorded 
during cardiac catheterization.  

 
I. Introduction 

IASTOLIC heart failure, characterized by signs and 
symptoms of heart failure in the face of normal ejection 

fraction, has become a clinical problem of epidemic 
proportions [1]. Despite numerous advances in 
echocardiography-based noninvasive assessment of DF, 
measurement of left-ventricular pressure (LVP) using fluid- 
filled or high-fidelity (Millar) catheters, remains the gold 
standard by which DF is assessed. Assessment includes 
analysis of the pressure contour from aortic valve closure to 
mitral valve closure (the IVPD contour), and the LVP 
contour from mitral valve opening to mitral valve closure at 
end-diastole. The isovolumic portion beyond peak negative 
dP/dt is traditionally characterized via the time-constant of 
isovolumic pressure decay (τ), a monoexponential pressure 
decay rate constant. Peak negative dP/dt itself ( P!  MIN) is also 
employed. Both τ and P! MIN may be easily determined from 
the pressure phase plane (PPP), defined by the P(t) vs. P!  (t) 
plot (Fig 1). Prolonged τ and blunted P! MIN are interpreted 
clinically as evidence of relaxation abnormalities and 
diastolic dysfunction [2]. However, beat-to-beat load 
variation, from respiration or physiological intervention, 
may significantly impact the IVPD contour, thereby altering 
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τ and P! MIN. Thus prolonged τ and blunted P! MIN may be due 
to load alteration alone, and may not be reflective of intrinsic 
chamber properties determining IVPD. 

 
Fig. 1 The physiology of IVPD may be visualized in the pressure vs 
time plane, where pressure decay is typically modeled 
monoexponentially, or in the pressure phase plane. 

The problem of predicting IVPD contour from first 
principles has been recently solved. [3] We employed a 
kinematic model that incorporates restoring force opposed 
by inertia and resistance as the determinant of IVPD. Model 
parameters are obtained by solution of the ‘inverse problem’ 
using IVPD as input and generating model parameters as 
output. We have also derived and validated a mathematical 
expression utilizing the kinematic model parameters that is 
load-independent [4]. The load-independent index of 
isovolumic pressure decay (LIIIVPD) is denoted by MLIIIVPD. 
It is the slope of the linear regression relating peak restoring 
force driving pressure decay, vs. the peak opposing resistive 
force. Each point of the regression is extracted from an 
individual IVPD contour. Thus, by analyzing a set of 
load-varying IVPD contours, we determine a mathematically 
conserved parameter, and this parameter by definition, must 
be independent of load.  
 Initial results show that MLIIIVPD is indeed conserved in the 
face of load variation and is correlated with the ability of the 
chamber to quickly and effectively relax from the previous 
systolic contraction. Because of the obvious impact that 
MLIIIVPD may have clinically, it is important to develop 
methods by which MLIIIVPD may be automatically calculated 
in real-time during cardiac catheterization. While previous 
work has utilized semi-automated methods, in this work we 
present a fully automated approach for analysis of 
hemodynamic data that provides clinicians and investigators 
with the value of MLIIIVPD in real time.  
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       II.  Model and Methods 

A. Kinematic Model of Isovolumic Pressure Decay 
 In recent work, Chung et al unified existing models of 

IVPD with a general model that completely characterizes the 
wide range of physiologically observed IVPD trajectories in 
the PPP. Utilizing Laplace’s law to transform displacements 
to pressures, Chung et al proposed the following differential 
equation to account for IVPD: 
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where τc is a relaxation parameter, Ek is a stiffness 
parameter, P∞ is the pressure asymptote, and P!  and P!!  are 
the first and second time derivatives of pressure. This 
equation can be solved in the underdamped regime (4Ek>τc) 
for pressure: 
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where Po is the initial pressure assuming zero pressure 
asymptote, P! o is the initial time derivative of pressure, and 

ω=

 

E
k
!

"
c( )
2

4

. The critically damped and overdamped 

solutions can be determined by evaluating equation (2) at 
ω=0 or ω=iβ limits, respectively.  

B. Derivation of Load Independent Index of IVPD 
The LIIIVPD derivation has been discussed previously, 

and we review it briefly here. We begin by noting that (1), 
the governing differential equation of IVPD is obeyed 
independent of load. We consider this equation at the 
minimum of the phase-plane bowl, i.e. at minimum dP/dt. At 
this point Eq. 1 becomes: 
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Eq. (3) demands that the plot of P!  vs. t yields an inverted 
damped sine wave, and at t = 0, P! = P! o. Indeed, P! = 0 at the 
LVP maximum pressure, which is before the start of the 
isovolumic regime. However, Eq. (3) may be extrapolated to 
the time where P!  = 0. This time point defines a maximum 
pressure assuming an isovolumic condition, and we 
therefore call this value P*

MAX. The time at which P*
MAX 

occurs, tP*MAX, can be found by differentiating Eq. (3) and 
solving for the time at which P!  = 0. Evaluating Eq. (3) at 
tP*MAX yields P*

MAX.  
The short time between P*

MAX and P! MIN allows the initial 
pressure contour decay to be approximated as linear, and 
therefore the pressure at P! MIN is approximated by P*

MAX: 

 
P(t

!PMIN
) = ! " P

MAX

*( ) + #        (4) 

where α and β are constants.  
Combining Eq. 3 with Eq. 1 and rearranging we find: 
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where MLIIIVPD and BLIIIVPD are constants and the 
magnitude of P! MIN is used. Thus, while traditional IVPD 
parameters may change with load, the slope MLIIIVPD is 

predicted to remain constant in the face of load variation, 
and thus is the predicted LIIIVPD. 

C. Automated Method of MLIIIVPD Calculation 
The algorithm for real-time MLIIIVPD calculation during 

catheterization is summarized in Figure 2, and described in 
more detail below. The entire process detailed in Figure 2 
was implemented with custom Matlab scripts (Matlab 6.0; 
MathWorks, Natick, MA) and applied retrospectively to 
archived hemodynamic data.  

 
Fig. 2 The automated process by which MLIIIVPD is calculated is presented. 
The gray area contains steps that are repeated for each heart cycle, defined 
by successive R-wave peaks. See text for details. 

Automated Hemodynamic Data Preprocessing 
The typical hemodynamic signal recorded in the 

catheterization laboratory consists of simultaneous pressure 
and ECG signals. Because MLIIIVPD requires analysis of 
IVPD contours from individual beats, the first step in data 
analysis involves the determination of all ECG R-wave 
peaks. Our code achieves this task by searching for local 
maxima in the DC filtered ECG signal over successive 
windows defined by the dominant period (determined by the 
frequency of the peak in the Fourier power spectrum).  

The sequence of R-wave peaks defines successive cardiac 
cycles. For each cycle, the IVPD contour is detected, 
kinematic parameters are extracted, and if proper filtering 
conditions are met, the LIIIVPD analysis is performed. The 
specific process for an individual beat is detailed in the gray 
box in Fig 2, and this process is repeated for the desired set 
of cardiac cycles. 

Further analysis involves pressure derivatives, requiring 
that the first and second pressure derivatives with respect to 
time are calculated from the pressure signal. The kinematic 
model applies to IVPD, and therefore an appropriate IVPD 
contour must be extracted from each cardiac cycle. We 
begin by determining key P(t) and P! (t) landmarks. For any 
given beat, the maximum and minimum pressure, PMAX and 
PMIN, are determined as the local maximum and minimum 
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respectively in P(t) between the defining consecutive 
R-wave peaks. The P! MIN value is similarly determined from 
P!  (t) values between defining consecutive R-wave peaks. 
The end-diastolic pressure LVEDP is taken to be the 
pressure at the R-wave peak at the end of the current beat, 
and the estimated mitral valve opening time tMVO is defined 
as the time between PMAX and PMIN where the pressure is 
closest to LVEDP. Next the inflection point in P!  (t) is 
determined from the local minimum in P!! (t) between the 
time of PMAX and P! MIN. Finally the IVPD contour is taken to 
be the pressure signal beginning at the determined inflection 
point in P! (t) and ending 5 msec before tMVO. 

Automated Kinematic Model Parameter Extraction 
Kinematic model parameters τc, Ek, Po, and P! o, are 

extracted for each individual beat by applying a 
Levenberg-Marquardt (LM) algorithm to the P! (t) data 
defined by the extracted IVPD contour. The algorithm is 
described in detail elsewhere [5], but the salient features are 
described briefly below. The algorithm requires the P! (t) 
data over the IVPD contour, as well as the initial guesses for 
the kinematic parameters.  

Initial model parameters are determined by evaluating 
both Eq. (1) and the derivative of Eq. (1) at to, the time of 
inflection point in P! , and at tP˙MIN, the time of P! MIN. 

At to, the derivative of Eq. (1) simplifies to: 
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Where P! o and P!! (to) are the values of the first and second 
pressure derivatives at the start of the already determined 
IVPD contour.  

Similarly, at tP˙MIN , Eq. (1) simplifies to  
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Applying Eq. (6) and (7) provides an expression for P∞: 
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Applying Eq. (8) and Eq. (2) at t=0 yields: 
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Note that P(to) is the pressure at the start of the 
automatically determined IVPD contour.  

Eq. (1) evaluated at t= to can be solved for Ek, in terms of 
Po, P! o, τc/Ek, and P!! o. Applying Eq. (6) and Eq. (9), we may 
express Ek in terms of already measured parameters: 
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Finally, from (6) and (10) we solve for τc: 
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Beginning with the initial parameter estimates determined 
from P! o and Eq. 9-11, the LM algorithm minimizes χ2 by 
iterating through parameter space, where χ2 is defined by 
∑(∆P)/σ, with ∆P defined by the error between model 
predicted and measured P! (t) along the IVPD contour, and σ 
defined as the error in measured P! (t). Iteration ends when 
subsequent χ2 values change by less than a predetermined 
threshold value. Upon completion, the root mean square 
error (RMSE) between model-predicted P! (t) and measured 
P! (t) is calculated using the LM-determined best fit 
kinematic parameters.   

Automated Determination of MLIIIVPD 
 If the RMSE is within an appropriate threshold, then 
P*

MAX is determined as described above.  Then the effective 
peak force driving pressure decay, Ek•(P*

MAX-P∞), and the 
effective peak force resisting pressure decay, τc• P! MIN, is 
calculated. Each analyzed cardiac cycle therefore provides 
individual {τc• P! MIN, Ek•(P*

MAX-P∞)} coordinates. The slope 
(MLIIIVPD), intercept (BLIIIVPD), and r2 of the best fit line 
through the points defined by these coordinates is then 
updated with each analyzed IVPD contour and output in real 
time. The appropriate RMSE threshold for robust automated 
analysis is discussed in section D below.  

D. Experimental Exploration of Tuning Parameters 
In the current work we utilized data presented in a 

previous study. The data consists of twenty-five datasets 
from the Cardiovascular Biophysics Laboratory Database of 
simultaneous micromanometric catheter recorded left 
ventricular pressure (LVP) and echocardiographic data [4].  

MLIIIVPD,  RMSE Cutoff,  and Number of Cardiac Cycles  
Because physiological data may contain cardiac cycles 

with unanticipated noise in the pressure signal, it is 
important for the automated methodology to detect 
inappropriately noisy IVPD contours so that they are not 
included in the MLIIIVPD analysis. In previous work we 
discarded beats with P! (t) RMSE above the mean RMSE 
value. This however required a large number of beats, which 
may not be practical for real-time clinical application. 
Aggressive filtering, however, reduces the total number of 
beats analyzed, and may reduce the robustness of the linear 
fit determining MLIIIVPD. To better characterize the 
appropriate RMSE cutoff, we perform an exploratory 
analysis in one of the 25 previously recorded datasets. We 
apply 7 different RMSE cutoff values. For each set of 
filtered beats, we calculate MLIIIVPD from n random beats, 
where n ranges from 2 to the total number of filtered beats. 

III. RESULTS 
The final MLIIIVPD values were strongly correlated with 

clinical parameters of interest, and the r2 values were very 
close to unity, as described previously [4]. The initial 
estimates input to the LM algorithm proved to be close to the 
final parameters, and less than 100 iterations were required 
on average to converge to a best-fit solution. 
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Fig3. Applying the 25% (bottom) and 50% (middle) RMSE cutoff 
between minimum RMSE and mean RMSE, as well as the mean RMSE 
cutoff (top) leaves 11, 38, and 222 beats respectively. For each case the 
MLIIIVPD (dots) and r2 of the line whose slope is MLIIIVPD (crosses) defined 
by n random beats chosen from the remaining beats is shown. 
 

Among the 340 beats analyzed in the subject of interest, 

 

˙ P (t) RMSE varied between 10.6 mmHg/s and 66.3 mmHg/s, 
with the mean equal to 32.1 mmHg/s. RMSE cutoff values 
of 16.0, 21.4, 26.8, 32.1, 37.5, 42.9, and 48.3 were chosen.  

For each chosen RMSE cutoff value, n beats, varying 
form 2 to the total number of remaining beats, were chosen 
randomly and analyzed according to the LIIIVPD methods 
described above. Fig 3 shows the MLIIIVPD and r2 values vs. 

number of beats analyzed n for the lowest 2 RMSE values, 
as well as the mean RMSE value. Remaining RMSE cutoff 
values provided similar MLIIIVPD vs. n plots. Note that while 
the lower RMSE cutoff leaves far fewer total beats with 
which to generate MLIIIVPD, it appears that fewer beats are 
needed to generate the appropriate MLIIIVPD value when those 
beats are chosen from among the lower RMSE group.  

IV. DISCUSSION 
Figure 3 clearly demonstrates an important trade-off that 

must be considered in the design of an automated process for 
determination of MLIIIVPD in real time. The typical 
catheterization case has a limited number of cardiac cycles 

that can be measured, because arterial access time must be 
minimized, whereas the calculation of MLIIIVPD requires 
numerous beats to be analyzed, especially if the data is noisy. 
When only data with RMSE below the mean RMSE is 
included, as shown in the top panel of Fig 3, MLIIIVPD shows 
approximately 10% variation before the first 50 beats are 
analyzed. This variation decreases as more beats are 
analyzed, until a final value of 1.15 is reached. When a more 
stringent RMSE cutoff is applied (21.3 mmHg), the MLIIIVPD 
variation remains until 30 beats are analyzed, but inclusion 
of all 40 beats results in a convergence on MLIIIVPD = 1.13. 
Finally, with the most stringent RMSE cutoff applied (16.0 
mmHg), only 11 beats are available and there is significant 
variation in MLIIIVPD, but the final value remains 1.13.  
 These results suggest that while low RMSE data is ideal, 
given typical data with a normal distribution of RMSE 
values, finding enough beats with low RMSE values may 
not be possible because the total number of recorded cardiac 
cycles may be limited. However, an interesting property 
emerges from the top panel of Fig 3, where the mean RMSE 
was chosen as the cutoff. It is evident that MLIIIVPD shows a 
symmetry around the final MLIIIVPD value. Indeed, a running 
average of MLIIVPD in the top panel stabilizes between 1.14 
and 1.15 within 9 beats. For normally distributed data that 
would imply 18 measured cardiac cycles in total, which is 
reasonable in the catheterization laboratory. Further work 
regarding the symmetry of MLIIIVPD vs. n and the appropriate 
averaging techniques to minimize the needed number of 
cardiac cycles to be analyzed is warranted.  

V. CONCLUSION 
MLIIIVPD has been shown to correlate with conventional 

IVPD clinical parameters, and to be load-independent. To 
ensure clinical utility, we provide a methodologic algorithm 
by which MLIIIVPD can be determined from pressure and ECG 
data alone in a real-time, automated fashion. Future work 
defining criteria for recording the number of beats necessary 
for robust MLIIIVPD determination is planned.  
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