
  

  

Abstract— Respiratory CO2 measurement (capnography) is 

an important diagnosis tool that lacks inexpensive and wearable 

sensors. This paper develops techniques to enable use of 

inexpensive but slow CO2 sensors for breath-by-breath tracking 

of CO2 concentration. This is achieved by mathematically 

modeling the dynamic response and using model-inversion 

techniques to predict input CO2 concentration from the slow-

varying output. Experiments are designed to identify model-

dynamics and extract relevant model-parameters for a solid-

state room monitoring CO2 sensor. A second-order model that 

accounts for flow through the sensor’s filter and casing is found 

to be accurate in describing the sensor’s slow response. The 

resulting estimate is compared with a standard-of-care 

respiratory CO2 analyzer and shown to effectively track 

variation in breath-by-breath CO2 concentration. This 

methodology is potentially useful for measuring fast-varying 

inputs to any slow sensor. 

I. REVIEW OF CAPNOGRAPHY SENSORS 

ESPIRATORY carbon dioxide (CO2) gas analysis or 

capnography, has become a critical part of a number of 

diagnostic tests and monitoring devices used clinically.  

For example, monitoring respiratory gases has now become 

current standard of care for patients receiving general 

anesthesia [1]. After anesthesia, respiration can be depressed 

because of anesthesetic agents or additionally administered 

drugs (namely opioids) used to control pain leading to a rise 

in CO2 concentration (hypercapnia).  Breath analysis 

involving monitoring of the exhaled CO2 concentration is 

therefore used in anesthesia [2-4].   

Integration of respiratory gas analysis with measures of 

breathing pattern (e.g., tidal volume, respiratory rate) and 

ventilation to obtain measures of oxygen consumption (VO2) 

and carbon dioxide production (VCO2), can provide 

powerful prognostic information in a number of diseases [5].  

In the case of hypercapnia (excess CO2 in blood), breath 

analysis requires measurement of concentration of CO2.  

Measuring exhaled CO2 has also been used to confirm the 

correct placement of an endotracheal tube in the trachea and 

has saved many lives [6]. Several other applications such as 

monitoring patient breathing during treatment of cardiac 

arrest, asthma, dyspnea, pediatric trauma etc have also been 

reported [7]. 

Current measurement systems for CO2 gas analysis 

include infra-red analyzers and mass spectrometers.  Bedside 
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infra-red analyzers are used for respiratory CO2 gas analysis 

in anesthesiology [8].  Mass spectrometers have always been 

considered the gold standard for respiratory gas analysis for 

a number of reasons, including fast response time, ability to 

measure dry gases, accuracy and stability of measures [5].  In 

addition they have the advantage of measuring multiple 

gases simultaneously.  These systems however have fallen 

out of favor due primarily to cost and size, as well as the 

need for ongoing preventive maintenance.  When cost and 

space are not an issue, they remain the premier system for 

respiratory gas analysis.  Several modifications can be made 

to mass spectrometers to further reduce gas delays and 

enhance response times.   

A major limitation of both bedside infrared analyzers 

and mass spectrometers is the fact that they are expensive, 

bulky, cannot be used for ambulatory applications and for 

remote dynamic applications. In addition, the constant 

sample draw, temperature changes and water vapor pressure 

result in additional complications in these systems that need 

to be overcome (e.g., special lines or chemicals to dry the 

gas prior to analysis), which often causes delays in analysis 

or reduced response times.   

Thus there is a need for new technology that would 

overcome many of these current obstacles.  In particular, 

there is a significant need for small portable CO2 sensor units 

that can be attached to the patient and used for ambulatory 

clinical applications [9, 10].  A small wireless respiratory 

CO2 analysis system would allow for continual ambulatory 

measures.  Having the potential for continual or intermittent 

wireless feedback on respiratory CO2 measures could 

provide unique and important feedback for monitoring health 

status in several patient groups and has the potential to 

reduce emergency room visits and reduce health care costs 

[11, 12]. 

Early embodiments [13, 14] of respiratory monitors for 

non-intubated patients have been limited to measurement of 

respiratory rate alone.  A more recently developed infra-red 

probe (PhaseIn Medical Technologies, Inc.) may be used to 

measure CO2 at the nose of the patient. While such probes 

are more convenient to use compared to the bedside 

analyzers, they are still far too bulky to be attached to the 

body of the patient.  Hence, they cannot be used for 

ambulatory or home monitoring applications (such as sleep 

apnea), where a small untethered sensor unit that can be 

mounted on the nose of the patient would be invaluable. 

II. SOLID-STATE TECHNOLOGIES FOR CO2 SENSING 

Solid-state CO2 sensors developed using responsive 

materials have the potential to be small, inexpensive and 

directly mountable beneath the nasal cavity, making them 
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attractive for ambulatory monitoring. Several materials have 

been examined for realizing solid-state CO2 sensors. 

Materials found responsive include polymers [15, 16], 

carbon nanotubes [17-19] and metal carbonates [20, 21]. 

However, most materials have been reported to be 

unacceptably sensitive to other respiratory variables (like 

temperature, humidity and other gases), making them 

inadequate for respiratory CO2 analysis. 

 A relatively selective solid state sensing technology has 

been that of metal-carbonate electrolytic sensors. Electrolytic 

carbonate sensors possess sensitivity and selectivity suitable 

for respiratory monitoring. One embodiment [21] based on 

Li2CO3-CaCO3 was shown to be particularly selective. This 

embodiment was later commercialized by Figaro 

Engineering, Japan [22].  

However, such sensors show response times that are orders 

of magnitude higher (10’s of seconds) than that required for 

respiratory monitoring (100ms). Hence they have been 

traditionally used for slow CO2 monitoring applications like 

indoor air quality and greenhouse monitoring. However, it is 

possible to use such slow sensors for monitoring fast CO2 

concentration changes using a mathematical model of its 

time-response. This is shown for the first time in this paper 

using a Figaro electrolytic sensor. 

The developed algorithm allows commercial electrolytic CO2 

sensors to be used for monitoring fast changes in respiratory 

CO2 gas concentration. The estimation algorithm which 

could be easily implemented on a micro-controller or a base-

computer is not expected to substantially add to the size and 

cost of electrolytic CO2 sensors. Thus, this technique heralds 

the use of low-cost electrolytic CO2 sensors for ambulatory 

respiratory monitoring.  

The following section discusses algorithm development and 

signal processing techniques for estimation of fast varying 

CO2 concentration input from a slow Figaro electrolytic 

sensor. Then, details of the experiments with the Figaro 

sensor are provided followed by experimental comparisons 

with an infra-red respiratory CO2 analyzer. A robust second-

order cascaded model is found to be sufficient for predicting 

respiratory CO2 input.   

III. MODEL INVERSION USING FIRST ORDER MODEL 

The development of an estimation algorithm requires a 

mathematical model of the slow sensor’s dynamic response.  

Using a model, it would be possible to understand the 

relation between the actual input (respiratory CO2 

concentration) and the observed output from the sensor. In 

this work, the sensor is initially modeled as a first order 

transfer function of the form:  

( ) ( ) ( )y t x t y tτ= − &       (1) 

where y is voltage from the sensor, x is the respiratory CO2 

concentration andτ is the time constant. This model is 

chosen because the first order response closely resembles 

that of an electrolytic CO2 sensor’s response. Figure 1 shows 

the time response of a first order system (τ  = 90) and Figure 

2 shows the observed response from a Figaro CO2 sensor. 

Since the sensor’s response was similar to a first order 

system’s response, the above model initially seems adequate. 

 
Figure 1. Expected output from a CO2 sensor showing a first-

order response to respiratory CO2 input 

 
Figure 2. Observed response of Figaro CO2 sensor to real 

breathing 

An inverse first-order equation was then be used to predict 

the fast varying input provided the time constant τ of the 

system is known (the time constant itself can be determined 

by experiments). In this work, further signal processing was 

also used to remove the effect of noise and in the data.  

A.  Estimation Algorithm 

Let the respiratory CO2 input and sensor output (as functions 

of time) be denoted by ( )x t  and ( )y t  respectively. Eq. 1 

can be rewritten as: 

( ) ( ) ( )y t y t x tτ+ =&      (2) 

Substituting
[ ] [ 1]

( )
y n y n

y t
t

− −
=

∆
& , Eq. 2 can be written in 

discrete-time domain as: 

[ ] [ 1]
[ ] [ ] .

y n y n
x n y n

t
τ

− −
= +

∆
     (3) 

where [ ]x n , [ ]y n , [ 1]y n −  denote present input, present 

output and output at previous time-step respectively. 
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τ and t∆  are sensor’s time constant and data acquisition 

system’s sampling time respectively. Eq. 3 can be used to 

estimate the input [ ]x n  by measurement of the output [ ]y n  

over time. 

The above technique assumes that the sensor’s time constant 

τ  is known apriori. Time constant τ  is defined as the time 

taken for the sensor’s response to reach 63% of its final 

value. The time constant can be calculated by calibration 

experiments.  

As Eqs. 2, 3 involve differentiation of a measured signal, 

high frequency measurement noise will be amplified greatly. 

Hence the estimate of the input [ ]x n  will be noisy. To 

reduce the effect of noise, the measured signal [ ]y n  is 

filtered through a low-pass filter before using Eq. 3. 

However, such filtering does not completely eliminate noise 

in the measurement. Hence, the input-estimate [ ]x n is 

further filtered through a low-pass filter to remove noise and 

make the signal readable.  

B. Results 

The above procedure was used to estimate the breathing 

input to a Figaro CDM 4160 evaluation module. A calibrated 

NDIR capnograph (Nonin LifeSense with analog voltage 

output) was used to compare estimates with true respiratory 

CO2 concentration. The capnograph drew breath samples 

using an internal pump through a 21” nasal pressure cannula 

(Medcare #1420002) which was stuck on the outer wall of 

the Figaro CO2 sensor as shown in Figure 3. Note that delays 

due to transport through sampling tube are not compensated 

in this work as they do not affect comparison between 

estimated and measured CO2 concentrations. 

 
Figure 3. Schematic diagram of showing sampling tube stuck on 

Figaro CO2 sensor's wall (not to scale) 

Initial estimates (with τ  = 17) using the first order model 

for the Figaro sensor resulted in drift in the estimate. This is 

shown in Figure 4. The drift observed in the estimate could 

not be corrected by altering the value of τ used in Eq. 3 

indicating that the first-order model could not completely 

capture the dynamic response of the sensor. 

 
Figure 4. Drifting estimate using first order model for CO2 

sensor  

IV. MODEL INVERSION USING SECOND ORDER MODEL 

Since the first order model does not provide a completely 

accurate estimate of the capnogram, a more accurate model 

is developed to directly remove drift, while simultaneously 

correcting the shape of estimated input. The assumption 

behind the first order model was that the slow response was 

due to the inherent speed of the electrolytic sensor. The 

effect of the zeolite filter covering the sensor was ignored in 

the model. Zeolite filters are typically used to absorb certain 

interfering gas species that could corrupt the sensor’s output. 

However, gas transit through such filters reduces the speed 

of response of the sensor. Thus zeolite filters enable robust 

sensing sacrificing speed of response. 

The second order model is chosen as a cascade of two first 

order models:  

( ) ( ) ( )
f s

y t y t y tτ= − , ( ) ( ) ( )
f f f

y t x t y tτ= −  

where 
f

y  is  unmeasured CO2 concentration of outflow 

from zeolite filter,
f

τ and
s

τ represent time constants for 

filter and sensor respectively. Following the derivation in the 

previous section, 

( )( ) ( ) ( ) ( )
f s f s

y t y t y t x tτ τ τ τ+ + + =& &&       (4) 

Substituting
2

[ ] 2 [ 1] [ 2]
( )

y n y n y n
y t

t

− − + −
=

∆
&& , Eq. 4 can 

be written in discrete-time domain as: 

( ) 2

[ ] [ 1] [ ] 2 [ 1] [ 2]
[ ] [ ] . .f s f s

y n y n y n y n y n
x n y n

t t
τ τ τ τ

− − − − + −
= + + +

∆ ∆

   (5) 

Calibration experiments using the Nonin LifeSense CO2 

analyzer and Figaro CO2 sensor were used to obtain values 

for
f

τ ,
s

τ . MATLAB™ software’s system identification 

toolbox was used to identify the time constants in the second 
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order model as 15.13
f

τ = and 1.44
s

τ = . The software 

computes the best fit between the predicted data and 

measured data to calculate these time constants. Trial-and-

error with model orders and time-constant values also 

indicated the correctness of the second order model and time 

constant values respectively. These time constants were used 

to estimate the input in other experiments.  

Figure 5 shows the comparison between first and second 

order models in predicting the respiratory input due to a 

single breath. The error in estimating the input due to the 

first order model is clear from Figure 5.  

 
Figure 5. Comparison of estimated input using first and second 

order models for a single breath 

Figure 6 shows the effect of using Eq. 5 in correcting the 

drift observed in Figure 4. It may be seen from Figure 6 that 

the estimation algorithm reliably tracks variation in peak 

CO2 concentration in every breath with little drift. 

 
Figure 6. Drift-free estimate using second order model for CO2 

sensor 

V. CONCLUSION 

Results obtained show good correlation with measurements 

from standard-of-care NDIR respiratory CO2 analyzers. The 

estimation algorithm reliably tracks the relative variation in 

peak CO2 concentration with every breath. Future work will 

address improvements to predict the exact shape of 

capnogram.  

The algorithms presented above are a first attempt to use 

signal processing to achieve high-speed gas sensing with 

slow CO2 sensors. These modeling and measurement 

techniques allow use of any slow solid-state sensors for high-

speed sensing. Thus, the developed method is potentially 

useful for a variety of sensing applications besides 

respiratory monitoring.  
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